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Preface

This book is an introduction to machine learning control (MLC), a surprisingly
simple model-free methodology to tame complex nonlinear systems. These systems
are assumed to be manipulated by a finite number of actuators (inputs) and mon-
itored by a finite number of sensors (outputs). The control logic is chosen to
minimize a well-defined cost functional.

MLC brings together three well-established disciplines: the theory of
closed-loop feedback control, machine learning and regression, and the nonlinear
dynamical systems that are characteristic of turbulent fluid flows. Over the past
decades, control theory has developed into a mature discipline with a beautiful
theoretical foundation and powerful associated numerical algorithms. Important
advances have been made to enable robust control of systems with sensor noise,
external disturbances, and model uncertainty. Modern methods from control theory
now pervade the engineering sciences and have transformed the industrial land-
scape. However, challenges remain for the control of systems with strongly non-
linear dynamics leading to broadband frequency spectra, a high-dimensional state
space, and large time delays. MLC begins to address these challenges using
advanced methods from machine learning to discover effective control laws.

Many turbulence control problems are not adequately described by linear
models, have exceedingly large state spaces, and suffer from time delays from
actuators to sensors via nonlinear convective fluid dynamic effects. Take for
instance the aerodynamic drag minimization of a car with actuators at the back side,
pressure sensors distributed over the car, and a smart feedback control logic.
Numerical simulation of the underlying dynamics given by the Navier–Stokes
equations requires days or weeks, while the control system requires actuation
decisions on the order of milliseconds. Reduced-order models that incorporate
nonlinearities, multiscale phenomena, and actuation effects have eluded many
serious efforts and will likely remain elusive for years to come. In short, there may
not even be a viable model for robust control design. Nevertheless, the literature
contains many studies on turbulence control, with the majority either employing
open-loop forcing such as periodic blowing, slowly adapting a working open-loop
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strategy, or stabilizing an underlying laminar solution such as a laminar boundary
layer on an aircraft wing. Feedback control responding to dominant flow structures
in real time may be found in numerical studies but is rarely found in real-world
experiments with turbulent flows. Indeed, turbulence control is a grand challenge
problem in engineering, with far-reaching potential scientific, industrial, and soci-
etal impact.

Yet, just looking at the flight maneuvers of a bird, bat, or insect, it is clear that
nature has found impressive feedback flow control solutions without employing
advanced mathematical models. An eagle, for instance, can land gently on a rocky
surface under gusty wind conditions and in rain by moving its wings and feathers to
expertly manipulate fluid forces. More than 50 years ago, Ingo Rechenberg and
Hans-Peter Schwefel have emulated nature’s evolutionary way to optimize flow
properties at the former Hermann-Föttinger-Institut of the Berlin Institute of
Technology, Germany. Their pioneering evolutionary strategies started evolution-
ary computations. Subsequent innovations include evolutionary programming
(Fogel Owens and Walsh 1966), genetic algorithms (Holland 1975) and genetic
programming (Koza 1992). These evolutionary computations constitute an
important pillar of machine learning. In a visionary publication in 1959, the arti-
ficial intelligence pioneer Arthur Samuel defined machine learning as a ‘field of
study that gives computers the ability to learn without being explicitly pro-
grammed.’ Machine learning is a rapidly evolving discipline of computer science
that is benefiting from the current explosion of big data. It has successfully
improved an immense range of technologies—from the smart phone to the autopilot
in Tesla’s Sedan and to large-scale factory processes. In academia, nearly all sci-
entific disciplines are profiting from machine learning.

Not surprisingly, machine learning methods may augment or replace control
design in myriad applications. Robots learn to walk with dynamic programming.
Genetic algorithms are used to optimize the coefficients in proportional–integral–
derivate (PID) controllers. The groups of N. Benard and E. Moreau employ genetic
algorithms to optimize linear sensor feedback in a flow control experiment.
Reinforcement learning has been successfully applied to stabilize chaotic dynamics,
and has recently also reduced cavity noise in an experiment operated by F.
Lusseyran, L. Pastur and L. Mathelin. The authors of this book have pushed the first
applications of genetic programming in feedback control of nonlinear dynamics,
direct Navier–Stokes simulations and experimental turbulent shear flows. This book
focuses on arguably one of the simplest, most versatile and yet very powerful
version of machine learning control: Optimal nonlinear control laws are identified
with genetic programming. Corresponding success stories are described throughout
this book.

The authors have taught material from this book in several university courses.
These courses focus on basic principles using simple examples, and the content
requires anywhere from 15 to 30 h to cover. Our students have had backgrounds in
computer science, control theory, nonlinear dynamics, or fluid mechanics. The
prospective reader is not expected to have hands-on expertise in any of these fields
but should come with the ambition to control a complex system. The book is
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organized as follows. In Chap. 1, the reader is introduced to feedback control and its
challenges for complex real-world problems. Chapter 2 constitutes the core of the
book. This chapter formulates feedback control as a regression problem and
employs genetic programming as a powerful regression technique to identify the
best feedback law. Chapter 3 reviews classical methods of control theory against
which MLC is benchmarked in Chap. 4 for linear and weakly nonlinear dynamics.
These chapters provide context for feedback control, but they are not required to
implement the MLC methods in Chap. 2. The hurried reader may jump to Chap. 5
if she/he is interested in strongly nonlinear dynamics applications or to Chap. 6
if she/he is interested in experimental implementations of feedback flow control.
Chapter 7 distills good practices for real-world experiments that need to be taken
into account in any MLC implementation. In Chap. 8 we provide an outlook on
future methodological advances, which are expected to drastically amplify the
applicability and performance of MLC. In addition, we list a number of future MLC
applications with epic proportions.

We have profited tremendously from interactions with many colleagues on
machine learning control. First, we highly appreciate André Thess for his continual
encouragement to write a book about turbulence control for this Springer series. He
has nurtured the idea for years before we decided to write this book. We highly
appreciate the insightful and inspiring interviews with leading scholars of the field:
Shervin Bagheri, Belinda Batten, Mark Glauser, Marc Schoenauer, and David
Williams. These additions provide valuable perspectives for past progress and
future work. Eurika Kaiser has provided continual exquisite feedback on our
chapters and also contributed with her illuminating visualizations in Chap. 7
showing the performance of MLC.

We have also benefited greatly from our mentors throughout our careers. BRN is
deeply indebted to his turbulence control mentors Andrzej Banaszuk, Andreas
Dillmann, Helmut Eckelmann, Rudibert King, and William K. George, who shared
and fueled the passion for the field. SLB would like to gratefully acknowledge and
thank Nathan Kutz, Naomi Leonard, Richard Murray, Clancy Rowley, and Rob
Stengel, who each found unique ways to make dynamics and control theory come
to life. TD would like to acknowledge Eduardo Jose Wesfreid, Jean-Luc Aider,
Guillermo Artana, Luc Pastur, François Lusseyran, and Bernd R. Noack, who each
have had a profound (and most beneficial) impact on his perception of the different
fields he has been in contact with. This book would not have been possible without
our many colleagues, collaborators, and co-authors who have shared our early
enthusiasm for MLC and have dedicated significant energy to developing it:
Markus Abel, Jean-Luc Aider, Zhe Bai, Diogo Barros, Jean-Paul Bonnet, Jacques
Borée, Bing Brunton, Juan Martin Cabaleiro, Camila Chevot, Tom Daniel, Antoine
Debien, Laurent Cordier, Christophe Cuvier, Joël Delville (d), Caroline Fourment
(d), Hiroaki Fukumoto, Nicolas Gautier, Fabien Harambat, Eurika Kaiser, Laurent
Keirsbulck, Azeddine Kourta, Kai von Krbek, Nathan Kutz, Jean-Charles
Laurentie, Ruiying (Cecile) Li, François Lusseyran, Robert Martinuzzi, Lionel
Mathelin, Nicolas Mazellier, Marek Morzyński, Christian Nayeri, Robert Niven,
Akira Oyama, Vladimir Parezanović, Oliver Paschereit, Luc Pastur, Brian Polagye,
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Josh Proctor, Bartosz Protas, Rolf Radespiel, Cedric Raibaudo, Jim Riley,
Tony Ruiz, Michael Schlegel, Peter Scholz, Marc Segond, Richard Semaan, Tamir
Shaqarin, Andreas Spohn, Michel Stanislas, Ben Strom, and Sam Taira. Many of
our co-authors have applied the nascent MLC methodology in their own experi-
ments early on, when success was far from certain. We thank our students for
visiting our courses in Argentina, France, Germany, and the USA and contributing
with many good questions, new ideas and encouraging project results. Anneke Pot
from Springer Publisher has dependably supported us in critical decisions about
book contents and the production procedure.

Buenos Aires Thomas Duriez
Seattle Steven L. Brunton
Paris-Saclay Bernd R. Noack
April 2016
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G Measurement function
g Gain of control command in a generalized mean-field model
H Hankel matrix
H Heavyside function
Hsection Height of the test section
hiðtÞ; hi;u; hi;max hot-wire or hot-film signal number i (raw signal average value

of the unactuated measurement average measurement under
constant maximal actuation)

hstep; hramp Height (of the step of the ramp)
I Identity matrix
i Index of individual (or other counter)
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J; J j
i

Cost function value; of individual i in generation j
Ja Cost on states
Jb Cost on actuation
j Index of generation
K Control function
Kf Kalman filter gain
Kr Regulator gain, full-state control matrix
L Length of the experimental test section
Lsep Separation length
l Width of the experimental test section
‘ Ramp length
Na Number of states
Nb Number of actuation commands
Ne Number of individuals concerned by elitism
Ng Number of generations
Ni Number of individuals
Np Tournament size
Ns Number of sensors
O; Od Observability matrix (continuous time; discrete time)
Pc Probability of crossover
Pm Probability of mutation
Pr Probability of replication
p Pressure
pðaÞ Probability density of states
Q State cost weight matrix for LQR
Q; Qu Flow rate to actuator jets (instantaneous; average value under

constant blowing)
R Actuation cost weight matrix for LQR
r�, r� Amplitude of oscillators of a generalized mean-field model

(Table 5.1)
Re Reynolds number
SaðtÞ; Sa;u Area of backflow (instantaneous; unactuated average value)
Sb Actuator cross section
Sj Jet cross section
Sref Ramp reference surface
s; sk; sm; s Sensor signal (vector, continuous time; vector, discrete time

kth step; mth component; scalar)
ŝ; âk Expected sensor value (continuous time; discrete time)
S; �S Markov parameters; of the augmented system
T Evaluation time
Trms Time period used to compute RMS of hot-wire signal

fluctuations
t, t0 Time, initial time
U; Ur Left singular vectors of SVD (complete; reduced)
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u; us, uΔ, u�, u� Velocity (vector field; steady solution; deviation due to

Reynolds stresses; contribution of frequency ω�; contribution
of frequency ω�)

u Slow varying mean flow
u

0 Flow fluctuations
u Streamwise velocity component
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Vd Disturbance variance
Vn Noise variance
VJet Characteristic velocity of jets
v Velocity vector initial condition
v Transverse velocity component
Wd

C
Discrete-time controllability Gramian

Wd
O

Discrete-time observability Gramian
W Mixing layer width
w Disturbance array
wr External reference signal
wd External disturbance, process noise
wn Measurement noise
w Spanwise velocity component
X Solution to the Riccati equation for LQR
x Space vector
x Streamwise coordinate
Y Solution to the Riccati equation for Kalman filter
y Transverse coordinate
z System output
z Spanwise coordinate
β��, β��, β��, β�� Parameter for growth rate change in oscillators of a general-

ized mean-field model (Table 5.1)
γ Penalization coefficient
γ��, γ��, γ��, γ�� Parameter for frequency change in oscillators for a generalized

mean-field model (Table 5.1)
δð�Þ Dirac delta function
ε Nonlinearity strength coefficient or state stabilization error
κ Gain of the generalized mean-field model
ν Kinematic viscosity
ρ Fluid densityP

;
P

r Singular values matrix of SVD, (complete; reduced)
σ Oscillator growth rate
σ�; σ�H; σ�; σ�H Growth rate of oscillators of a generalized mean-field model

(Table 5.1)
τ; τa; τu Period of time (with actuated system; with unactuated system)
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φ�, φ� Phase of oscillators in a generalized mean-field model
(Table 5.1)

χ Backflow coefficient
Ω Space domain
ω Oscillator pulsation
ω�; ω�H; ω�; ω�H Frequency of oscillators in a generalized mean-field model

(Table 5.1)
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Chapter 1
Introduction

I think it’s very important to have a feedback loop, where you’re
constantly thinking about what you’ve done and how you could
be doing it better.

Elon Musk

1.1 Feedback in Engineering and Living Systems

Feedback processes are critical aspects of most living and engineering systems.
Feedback occurs when the output of a system influences the input of the same sys-
tem. Feedback control is a process of creating such a feedback loop to modify the
behavior of a dynamical system through actuation that is informed by measurements
of the system.

The very existence of humans and other endothermic animals is based on a robust
feedback control: They maintain their body temperature within narrow limits despite
a large range of environmental conditions and disturbances. This temperature regula-
tion is performed with temperature monitoring and control actions, such as increasing
metabolism or sweating. Similarly, air conditioning also keeps a room temperature
in a narrow interval by heating or cooling via a ventilating air stream.

The world around us is actively shaped by feedback processes, from the mean-
dering path of a river to the gene regulation that occurs inside every cell in our body.
A child’s education may be considered a feedback control task, where parental and
societal feedback guide the child’s actions towards a desired goal, such as socially
acceptable behavior and the child becoming a productive member of society. The
order achieved in a modern society is the result of a balance of interests regulated
through active policing and the rule of laws, which are in turn shaped by a collec-
tive sense of justice and civil rights. Financial markets and portfolio management
are also feedback processes based on a control logic of buying and selling stocks
to reach an optimal growth or profit at a given risk over a certain time horizon. In
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2 1 Introduction

fact, currency inflation is actively manipulated by changing interest rates and issuing
bonds. Our very thoughts and actions are intimately related to a massively parallel
feedback architecture in our brain and nervous system, whereby external stimuli
are collected and assimilated, decisions are made, and control actions are executed,
resulting in our interaction with the world. Finally, the Earth’s climate and temper-
ature are maintained through a delicate balance of forcing from sources including
solar irradiance, greenhouse gases, vegetation, aerosols and cloud formation, many
of which are coupled through feedback.

The feedback control of fluid systems is an immensely important challenge with
profound implications for technologies in energy, security, transportation, medi-
cine, and many other endeavors. Flow control is an academically exciting research
field undergoing rapid progress—comprising many disciplines, including theoretical,
numerical and experimental fluid mechanics, control theory, reduced-order model-
ing, nonlinear dynamics and machine learning techniques. Flow control has appli-
cations of epic proportion, such as drag reduction of cars, trucks, trains, ships and
submarines, lift increase of airplanes, noise reduction of ground or airborne trans-
port vehicles, combustion efficiency and NOX reduction, cardiac monitoring and
intervention, optimization of pharmaceutical and chemical processes and weather
control. The flows found in most engineering applications are turbulent, introducing
the complexities of high-dimensionality, multi-scale structures, strong nonlinearities
and frequency crosstalk as additional challenges.

Feedback turbulence control shares a significant overlap with the other feedback
systems described above, in the sense that

• the control goal can be defined in mathematical terms;
• the control actions are also in a well-defined set;
• the unforced system has its own internal chaotic nonlinear dynamics, where neigh-

boring states may rapidly diverge to different behaviors within the prediction hori-
zon;

• the full state is only partially accessible by limited sensors;
• there is an underlying evolution equation (i.e., the Navier–Stokes equation) which

provides a high-fidelity description of the system, but may not be useful for control
decisions in a real-life experiment.

The last three properties are a generic consequence of high-dimensional nonlinear
dynamics. However, unlike many of the systems described above, turbulence control
is more benign, as the system quickly forgets its past treatment and the control
experiments tend to be more reproducible. In other words, the unforced and forced
systems have a statistical stationarity, i.e. statistical quantities like mean values and
variances are well defined. Regardless, feedback turbulence control is significantly
more complex than most academic control theory tasks, such as stabilization of an
inverted pendulum. Hence, improved feedback control architectures that work for
turbulence control may have significant impact in other complex systems.

Nature offers compelling examples of feedback flow control that may provide
inspiration for engineering efforts. For example, eagles are expert flyers, capable
of rising on thermals or landing gently on a rock or tree despite strong wind gust
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perturbations and other challenging weather conditions. These maneuvers require
active feedback control by sensing the current position and velocity and dynami-
cally adjusting the control actions involving the motion of wings and feathers. An
eagle’s flight is robust to significant uncertainty in the environment and flight condi-
tions, such as harsh weather and significant changes to its own body, including mass,
geometry, and wing shape. It is unlikely that eagles, or other flying animals, such as
birds, bats, or insects, are operating based on a high-fidelity model of the underlying
Navier–Stokes equations that govern fluid flow. Instead, it is more likely that these
animals have adapted and learned how to sense and modify dominant coherent struc-
tures in the fluid that are most responsible for generating forces relevant for flight.
Airplanes similarly move on prescribed trajectories at predetermined speeds under
varying wind and weather conditions by adjusting their control surfaces, such as flaps
and ailerons, and engine thrust. However, there is still a tremendous opportunity to
improve engineering flight performance using bio-inspired techniques.

This book outlines the use of machine learning to design control laws, partially
inspired by how animals learn control in new environments. This machine learning
control (MLC) provides a powerful new framework to control complex dynamical
systems that are currently beyond the capability of existing methods in control.

1.2 Benefits of Feedback Control

Figure 1.1 illustrates a general feedback control system. The physical system, also
called the plant, is depicted in the blue box. The system is monitored by sensors s
and manipulated by actuators b through a control logic depicted in the yellow box.

Physical
system

Disturbance
w

Actuators
b

Cost
J

Control
law

Sensors
s

Fig. 1.1 General optimization framework for feedback control. The behavior of the physical system
is modified by actuators (inputs, b) through a control law informed by sensor measurements of the
system (outputs, s). The control logic is designed to shape the closed-loop response from the
exogenous disturbances w to a high-level objective encoded by the cost function J
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Moreover, the plant is subjected to sensor noise and exogenous disturbances w and
the control shall be optimized with respect to a cost function J .

One example of an optimization tasks is drag reduction. A physically meaningful
optimization problem penalizes the actuation. A well-posed drag reduction problem
requests a minimization of the power required to overcome drag Jdrag plus the invested
actuation power Jact, i.e. the net gain J = Jdrag + Jact. Other examples include lift
increase, mixing increase and noise reduction. To keep an airplane on a desired
trajectory, the thrust and lift need to be kept at a well-defined level. Thus, the control
task becomes a reference tracking problem, in which a reference force—or other
quantity—is commanded. In this case, the cost function penalizes the deviation from
the desired state and the invested actuation level.

In the case of reference tracking, it is natural to first consider the open-loop
control architecture shown in Fig. 1.2. In this strategy, the actuation signal b is chosen
based on knowledge of the system to produce the desired output that matches the
commanded reference signal. This is how many toasters work, where the heating
element is turned on for a fixed amount of time depending on the desired setting.
However, open-loop control is fundamentally incapable of stabilizing an unstable
system, such as an inverted pendulum, as the plant model would have to be known
perfectly without any uncertainty or disturbances. Open-loop control is also incapable
of adjusting the actuation signal to compensate for unmeasured disturbances to the
system.

Instead of making control decisions purely based on the desired reference, as in
open-loop control, it is possible to close the loop by feeding back sensor measure-
ments of the system output so that the controller knows whether or not it is achieving
the desired goal. This closed-loop feedback control diagram is shown in Fig. 1.3.
Sensor-based feedback provides a solution to the issues that occur with open-loop
control. It is often possible to stabilize an unstable system with the aid of sensor
feedback, whereas it is never possible to stabilize an unstable system in open-loop.
In addition, closed-loop control is able to compensate for external disturbances and
model uncertainties, both of which should be measured in the sensor output.

Summarizing, feedback control is, for instance, necessary for the following tasks:

• Optimize a state or output with respect to a given cost function;
• Stabilize an unstable system;

Control
law

Physical
system

wr b + s

wd wn

+

Fig. 1.2 Open-loop control diagram. A reference signal wr is fed directly into an open-loop
controller which specifies a pre-determined actuation signal b. External disturbances (wd) and
sensor noise (wn), as well as un-modeled system dynamics and uncertainty, degrade the overall
performance
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Control
law

Physical
system

wr + ε b + s

−

Feedback signal

wd wn

+

Fig. 1.3 Closed-loop feedback control diagram. The sensor signal s is fed back and subtracted
from the reference signal wr . The resulting error ε is used by the controller to specify the actuation
signal b. Feedback is generally able to stabilize unstable plant dynamics while effectively rejecting
disturbances wd and attenuating noise wn

• Attenuate sensor noise;
• Compensate for exogenous disturbances and model uncertainty.

Mathematical Formulation of Feedback Control Task

There is a powerful theory of feedback control based on dynamical systems. In this
framework, the plant is modeled by an input–output system:

d

dt
a = F(a,b,wd), (1.1a)

s = G(a,b,wn), (1.1b)

consisting of a coupled system of possibly nonlinear differential equations in a state
variable a ∈ R

Na , where Na is the dimension of the state. The actuation input is given
by the vector b ∈ R

Nb and this input directly affects the state dynamics in Eq. (1.1a),
along with exogenous disturbances wd . The sensor measurements are given by the
output vector s ∈ R

Ns , and these measurements may be nonlinear functions of the
state a, the control b and noise wn.

The control task is generally to construct a controller

b = K(s,wr), (1.2)

so that the closed-loop system has desirable properties in terms of stability, attenua-
tion of noise, rejection of disturbances, and good reference tracking characteristics.
The commanded reference signal is wr . These factors are encoded in the cost func-
tion J , which is generally a function of the sensor output, the actuation input, and
the various external signals wr , wd , and wn.

With a well-designed sensor-based feedback control law, it is often possible to
obtain a closed-loop system that performs optimally with respect to the chosen cost
function and is robust to model uncertainty, external disturbances, and sensor noise.
In fact, most modern control problems are posed in terms of optimization via cost
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minimization. The perspective taken in this book is that machine learning provides
a powerful new set of optimization techniques to obtain high-performance control
laws even for extremely complicated systems with non-convex cost functions.

1.3 Challenges of Feedback Control

Most textbooks start with simple feedback control problems. An airplane, for
instance, may need to keep a certain ground speed. The airplane has a steady-state
map (model) indicating the required thrust (actuation) under ambient flow condi-
tions and for an average airplane. Thus, the right thrust may be commanded in an
open-loop manner based on the model, as illustrated in Fig. 1.2.

Yet, each airplane has its own steady-state map and an aging process (model
uncertainty). Moreover, the wind (exogenous disturbance) may change the ground
velocity. Model uncertainty and disturbances require a feedback element: The ground
speed needs to be measured (tachometer) and the thrust needs to be adjusted. If the
ground speed is too low (high), the thrust needs to be increased (decreased). The
general feedback scheme is illustrated in Fig. 1.3.

Evidently, the control design is simple. There is a single state variable a (speed)
which is sensed s (tachometer) and acted upon b (thrust) in a highly predictable
manner and with negligible time delay. We refer to the excellent textbook of Åström
and Murray [223] for the applicable control design.

The stabilization of steady solutions to the equations for laminar or transitional
flows requires more refined methods. A sufficiently detailed discretized of the
Navier–Stokes equation results in a system with a high-dimensional state, making it
computationally expensive to design and implement controllers. In addition, time-
scales may be very fast in real-world fluid applications, such as flow over a wing or in
a combustor, making controllers sensitive to time delays; these time-delays may be
due to sensor and actuator hardware or the computational overhead of enacting a con-
trol law. Sensor and actuator placement is also a challenge in high-dimensional fluid
systems, with competing goals of decreasing time delays and increasing downstream
prediction. Finally, many fluid systems are characterized by strongly non-normal lin-
earized dynamics, meaning that the linearized Navier–Stokes equations have nearly
parallel eigenvectors resulting in large transient growth of these modes in response
to excitation [67, 263].

Despite inherent nonlinearity, stabilizing a steady state brings the system closer
to the equilibrium solution where linearization is increasingly valid. Thus, the fluid
dynamics literature contains a rich set of success stories based on linear control meth-
ods. Examples include the stabilization of the cylinder wake [65, 115, 227, 219], of
the cavity flow [232], of the boundary layer [11, 172], and of the channel flow [29],
just to name a few [43]. The linear quadratic regulator and linear quadratic Gaussian
are among the most widely used methods for control based on computational fluid

mechanics. The model-based control of experimental plants requires reduced-order
models for computationally tractable on-line decisions. For details, we refer to
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excellent reviews on the applications of linear control theory in fluids mechanics
[13, 161, 232, 251]. The associated reduced-order modeling efforts are summarized
in these reviews and elaborated in [138, 197].

Optimization of turbulent flows tends to be much more complex. In addition to the
challenges outlined above, the system is strongly nonlinear and is sufficiently far from
a fixed point or limit cycle that linearization is not typically useful. The nonlinearity
manifests in frequency crosstalk, where actuation at a given frequency may excite
or suppress entirely different frequencies. Fully turbulent dynamics are typically
chaotic and evolve on a high-dimensional attractor, with the dimension of the attractor
generally increasing with the turbulence intensity. These are mathematical issues in
turbulence control, but there are also more practical engineering issues. These include
the cost of implementing a controller (i.e., actuator and sensor hardware, modifying
existing designs, etc.), computational requirements to meet exceedingly short time
scales imposed by fast dynamics and small length scales, and achieving the required
control authority to meaningfully modify the flow.

As a motivating example, let us assume we want to minimize the aerodynamic
drag of a car with, say, 32 blowing actuators distributed over all four trailing edges
and the same number of pressure sensors distributed over the car. A control logic
for driving the actuators based on the sensor readings shall help to minimize the
effective propulsion power required to overcome drag. This highlights the significant
challenges associated with in-time control:

• High-dimensional state;
• Strong nonlinearity;
• Time delays.

A direct numerical simulation of a suitably discretized Navier–Stokes equation has
not been performed for wind-tunnel conditions. Even a simplifying large eddy simu-
lation requires at minimum tens of millions of grid points and still has a narrow low-
frequency bandwidth for actuation. Secondly, the turbulent flow does not respond
linearly to the actuation, so that there is no superposition principle for actuation
effects. The changes to the flow caused by two actuators acting simultaneously is
not given by the sum of the responses of the two actuators acting alone. Moreover,
actuating at twice the actuation amplitude does not necessarily lead to twice the
output. The trend may even be reversed. Thirdly, the effect of actuation is generally
not measured immediately. It may take hundreds or thousands of characteristic time
scales to arrive at the converged actuated state [21,205]. We refer to our review article
on closed-loop turbulence control [43] for in-depth coverage of employed methods.

1.4 Feedback Turbulence Control is a Grand Challenge
Problem

A high-dimensionsional state space and nonlinear dynamics do not necessarily imply
unpredictable features. One liter of an ideal gas, for instance, contains O(1024) mole-
cules that move and collide according to Newton’s laws. Elastic collisions signify
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strongly nonlinear dynamics, and indeed, the numerical simulation of Newton’s laws
at macro-scale based on molecular dynamics will remain intractable for decades to
come. Yet, statistical averages are well described as an analytically computable max-
imum entropy state. This is the statistical foundation of classical thermodynamics.
In contrast, the search for similar closures of turbulence has eluded any comparable
success [198]. One reason is the ubiquitous Kolmogorov turbulence cascade. This
cascade connects large-scale energy carrying anisotropic coherent structures with
nearly isotropic small-scale dissipative structures over many orders of magnitudes in
scale [106]. The multi-scale physics of turbulence has eluded all mathematical sim-
plifications. Feynman has concluded that ‘Turbulence is the most important unsolved
problem of classical physics.’ In other words: a grand challenge problem.

Turbulence control can be considered an even harder problem compared to finding
statistical estimates of the unforced state. The control problem seeks to design a
small O(ε) actuation that brings about a large change in the flow. Many approaches
would require a particularly accurate control-oriented closure. The necessary control
mechanism might be pictured as a Maxwellian demon who changes the statistical
properties of the system by clever actions. Control theory methods often focus on
stabilization of equilibria or trajectories. Turbulence, however, is too far from any
fixed point or meaningful trajectory for the applicability of linearized methods. In
the words of Andrzej Banaszuk (1999):

The control theory of turbulence still needs to be invented.

1.5 Nature Teaches Us the Control Design

In the previous section, a generic control strategy for turbulence has been described as
a grand challenge problem. Yet, an eagle can land on a rock performing impressive
flight maneuvers without a PhD in fluid mechanics or control theory. Nature has
found another way of control design: learning by trial and error.

It is next to impossible to predict the effect of a control policy in a system such as
turbulence where we scarcely understand the unforced dynamics. However, it may
be comparatively easy to test the effectiveness of a control policy in an experiment.
It is then possible to evolve the control policy by systematic testing, exploiting
good control policies and exploring alternative ones. Following these principles,
Rechenberg [224] and Schwefel [243] have pioneered evolutionary strategies in
design problems of fluid mechanics more than 50 years ago at TU Berlin, Germany.

In the last 5 decades, biologically inspired optimization methods have become
increasingly powerful. Fleming and Purshouse [103] summarize:

The evolutionary computing (EC) field has its origins in four landmark evolutionary
approaches: evolutionary programming (EP) (Fogel, Owens, and Walsh, 1966), evolution
strategies (ES) (Schwefel, 1965; Rechenberg, 1973), genetic algorithms (GA) (Holland,
1975), and genetic programming (GP) (Koza, 1992).
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EP, GA and GP can be considered regression techniques to find input–output maps
that minimize a cost function. Control design can also be considered a regression
task: find the mapping from sensor signals to actuation commands that optimizes
the goal function. Not surprisingly, evolutionary computing is increasingly used for
complex control tasks. For example, EP is used for programming robot missions
[272]. GA are used to find optimal parameters of linear control laws [23, 90]. And
for almost two decades, GP has been employed to optimize nonlinear control laws
[91]. Arguably GP is one of the most powerful regression techniques as it leads to
analytical control laws of almost arbitrary form. All evolutionary methods are part
of the rapidly evolving field of machine learning. There are many other machine
learning techniques to discover input–output maps, such as decision trees, support
vector machines (SVM), and neural networks, to name only a few [280]. In fact,
the first example of feedback turbulence control with machine learning methods has
employed a neural network [171]. In the remainder of this book, we refer to machine
learning control as a strategy using any of the aforementioned data-driven regression
techniques to discover effective control laws.

1.6 Outline of the Book

The outline of the book is as follows. Chapter 2 describes the method of machine
learning control (MLC) in detail. In Chap. 3, linear control theory is presented to
build intuition and describe the most common control framework. This theoretical
foundation is not required to understand or implement MLC, but it does motivate the
role of feedback and highlights the importance of dynamic estimation. In Chap. 4,
MLC is benchmarked against known optimal control design of linear systems with-
out and with noise. We show that MLC is capable of reproducing the optimal linear
control but outperforms these methods even for weak nonlinearities. In Chap. 5 we
illustrate MLC for a low-dimensional system with frequency crosstalk. A large class
of fluid flows are described by such a system. We show that the linearized system is
uncontrollable while MLC discovers the enabling nonlinearity for stabilization. In
Chap. 6, we highlight promising results from MLC applied in real-world feedback
turbulence control experiments. Chapter 7 provides a summary of best practices, tac-
tics and strategies for implementing MLC in practice. Chapter 8 presents concluding
remarks with an outlook of future developments of MLC.

1.7 Exercises

Exercise 1–1: Name two examples of feedback control systems in everyday life.
Define the inputs and outputs of the system, the underlying system state and
dynamics, and describe the objective function. Describe the uncertainties in the
system and the types of noise and disturbances that are likely experienced.

http://dx.doi.org/10.1007/978-3-319-40624-4_2
http://dx.doi.org/10.1007/978-3-319-40624-4_3
http://dx.doi.org/10.1007/978-3-319-40624-4_4
http://dx.doi.org/10.1007/978-3-319-40624-4_5
http://dx.doi.org/10.1007/978-3-319-40624-4_6
http://dx.doi.org/10.1007/978-3-319-40624-4_7
http://dx.doi.org/10.1007/978-3-319-40624-4_8
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Exercise 1–2: Consider the following plant model:

s = b.

(a) Design an open-loop controller b = K(wr) to track a reference value wr .
(b) Now, imagine that the plant model is actually s = 2b. How much error is there

in the open-loop controller from above if we command a value wr = 10?
(c) Instead of open-loop control, implement the following closed-loop controller:

b = 10(wr − s). What is the error in the closed-loop system for the same
command wr = 10?

Exercise 1–3: Choose a major industry, such as transportation, energy, healthcare,
etc., and describe an opportunity that could be enabled by closed-loop control of a
turbulent fluid. Estimate the rough order of magnitude impact this would have in
terms of efficiency, cost, pollution, lives saved, etc. Now, hypothesize why these
innovations are not commonplace in these industries?



Chapter 2
Machine Learning Control (MLC)

All generalizations are false, including this one.
Mark Twain

In this chapter we discuss the central topic of this book: the use of powerful techniques
from machine learning to discover effective control laws. Machine learning is used
to generate models of a system from data; these models should improve with more
data, and they ideally generalize to scenarios beyond those observed in the training
data. Here, we extend this paradigm and wrap machine learning algorithms around
a complex system to learn an effective control law b = K(s) that maps the system
output (sensors, s) to the system input (actuators, b). The resulting machine learning
control (MLC) is motivated by problems involving complex control tasks where it
may be difficult or impossible to model the system and develop a useful control law.
Instead, we leverage experience and data to learn effective controllers.

The machine learning control architecture is shown schematically in Fig. 2.1. This
procedure involves having a well-defined control task that is formulated in terms of
minimizing a cost function J that may be evaluated based on the measured outputs of
the system, z. Next, the controller must have a flexible and general representation so
that a search algorithm may be enacted on the space of possible controllers. Finally, a
machine learning algorithm will be chosen to discover the most suitable control law
through some training procedure involving data from experiments or simulations.

In this chapter, we review and highlight concepts from machine learning, with
an emphasis on evolutionary algorithms (Sect. 2.1). Next (Sect. 2.2), we explore the
use of genetic programming as an effective method to discover control laws in a
high-dimensional search space. In Sect. 2.3, we provide implementation details and
explore illustrative examples to reinforce these concepts. The chapter concludes with
exercises (Sect. 2.4), suggested reading (Sect. 2.5), and an interview with Professor
Marc Schoenauer (Sect. 2.6), one of the first pioneers in evolutionary algorithms.

© Springer International Publishing Switzerland 2017
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Physical
system

w

b

Cost
function

z J

Machine
learning
control

s

learning loop (off-line)

Fig. 2.1 Schematic of machine learning control wrapped around a complex system using noisy
sensor-based feedback. The control objective is to minimize a well-defined cost function J within
the space of possible control laws. An off-line learning loop provides experiential data to train the
controller. Genetic programming provides a particularly flexible algorithm to search out effective
control laws. The vector z contains all of the information that may factor into the cost

2.1 Methods of Machine Learning

Machine learning [30, 92, 168, 194] is a rapidly developing field at the intersection of
statistics, computer science, and applied mathematics, and it is having transformative
impact across the engineering and natural sciences. Advances in machine learning are
largely being driven by commercial successes in technology and marketing as well
as the availability of vast quantities of data in nearly every field. These techniques
are now pervading other fields of academic and industrial research, and they have
already provided insights in astronomy, ecology, finance, and climate, to name a few.
The application of machine learning to design feedback control laws has tremendous
potential and is a relatively new frontier in data-driven engineering.

In this section, we begin by discussing similarities between machine learning and
classical methods from system identification. These techniques are already central
in control design and provide context for machine learning control. Next, we intro-
duce the evolutionary approaches of genetic algorithms and genetic programming.
Genetic programming is particularly promising for machine learning control because
of its generality in optimizing both the structure and parameters associated with a
controller. Finally, we provide a brief overview of other promising methods from
machine learning that may benefit future MLC efforts.
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2.1.1 System Identification as Machine Learning

Classical system identification may be considered an early form of machine learn-
ing, where a dynamical system is characterized through training data. The resulting
models approximate the input–output dynamics of the true system and may be used
to design controllers with the methods described in Chap. 3. The majority of meth-
ods in system identification are formulated for linear systems and provide models
of dubious quality for systems with strongly nonlinear dynamics. There are, how-
ever, extensions to linear parameter varying (LPV) systems, where the linear system
depends on a time-varying parameter [16, 247].

There is an expansive literature on system identification, with many techniques
having been developed to characterize aerospace systems during the 1960s to the
1980s [150, 174]. The eigensystem realization algorithm (ERA) [151, 181] and
observer Kalman filter identification (OKID) [152, 213] techniques build input–
output models using time-series data from a dynamical systems; they will be dis-
cussed more in Chap. 3. These methods are based on time-delay coordinates, which
are reminiscent of the Takens embedding [260]. The singular spectrum analysis
(SSA) from climate science [7, 36–38] provides a similar characterization of a time-
series but without generating input–output models. Recently SSA has been extended
in the nonlinear Laplacian spectral analysis (NLSA) [117], which includes kernel
methods from machine learning.

The dynamic mode decomposition (DMD) [229, 238, 270] is a promising new
technique for system identification that has strong connections to nonlinear dynami-
cal systems through Koopman spectral analysis [41, 47, 162, 163, 170, 187, 188, 282].
DMD has recently been extended to include sparse measurements [45] and inputs
and control [217]. The DMD method has been applied to numerous problems beyond
fluid dynamics [229, 238], where it originated, including epidemiology [218], video
processing [99, 124], robotics [25], and neuroscience [40]. Other prominent methods
include the autoregressive moving average (ARMA) models and extensions.

Decreasing the amount of data required for the training and execution of a model is
often important when a fast prediction or decision is required, as in turbulence control.
Compressed sensing and machine learning have already been combined to achieve
sparse decision making [39, 46, 169, 216, 279], which may dramatically reduce the
latency in a control decision. Many of these methods combine system identification
with clustering techniques, which are a cornerstone of machine learning. Cluster-
based reduced-order models (CROMs) are especially promising and have recently
been developed in fluids [154], building on cluster analysis [49] and transition matrix
models [241].

In the traditional framework, machine learning has been employed to model the
input–output characteristics of a system. Controllers are then designed based on
these models using traditional techniques. Machine learning control circumvents
this process and instead directly learns effective control laws without the need for a
model of the system.

http://dx.doi.org/10.1007/978-3-319-40624-4_3
http://dx.doi.org/10.1007/978-3-319-40624-4_3
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2.1.2 Genetic Algorithms

Evolutionary algorithms form an important category of machine learning techniques
that adapt and optimize through a process mimicking natural selection. A population
of individuals, called a generation, compete at a given task with a well-defined cost
function, and there are rules to propagate successful strategies to the next generation.
In many tasks, the search space is exceedingly large and there may be multiple
extrema so that gradient search algorithms yield sub-optimal results. Combining
gradient search with Monte Carlo may improve the quality of the solution, but this is
extremely expensive. Evolutionary algorithms provide an effective alternative search
strategy to find nearly optimal solutions in a high-dimensional search space.

Genetic algorithms (GA) are a type of evolutionary algorithm that are used to
identify and optimize parameters of an input–output map [76, 122, 137]. In contrast,
genetic programming (GP), which is discussed in the next section, is used to optimize
both the structure and parameters of the mapping [164, 166]. Genetic algorithms and
genetic programming are both based on the propagation of generations of individ-
uals by selection through fitness. The individuals that comprise a generation are
initially populated randomly and each individual is evaluated and their performance
assessed based on the evaluated cost function. An individual in a genetic algorithm
corresponds to a set of parameter values in a parameterized model to be optimized;
this parameterization is shown in Fig. 2.2. In genetic programming, the individual
corresponds to both the structure of the control law and the specific parameters, as
discussed in the next section.

After the initial generation is populated with individuals, each is evaluated and
assigned a fitness based on their performance on the cost function metric. Individuals
with a lower cost solution have a higher fitness and are more likely to advance to the
next generation. There are a set of rules, or genetic operations, that determine how
successful individuals advance to the next generation:

parameter 1 parameter 2

0 0 1 1 0 0

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

p1

p2

Fig. 2.2 Representation of an individual (parameter) in genetic algorithms. This binary representa-
tion encodes two parameters that are each represented with a 3-bit binary expression. Each parameter
value has an associated cost (right), with red indicating the lowest cost solution. Modified from
Brunton and Noack, Applied Mechanics Reviews, 2015 [43]
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Elitism: a handful of the most fit individuals advance directly to the next gen-
eration. Elitism guarantees that the top individuals from each generation do not
degrade in the absence of noise.

Replication: individuals advance directly to the next generation with a probability
related to fitness; also called asexual reproduction in genetic programming.

Crossover: two individuals are selected based on their fitness and random sec-
tions of their parameters are exchanged. These two individuals advance with the
exchanged information.

Mutation: individuals advance with random portions of their parameter represen-
tation replaced with random new values.

Mutation serves to explore the search space, providing access to global minima,
while crossover serves to exploit successful structures and optimize locally. Success-
ful individuals from each generation advance to the next generation through these
four genetic operations. New individuals may be added in each generation for variety.
This is depicted schematically for the genetic algorithm in Fig. 2.3. Generations are
evolved until the performance converges to a desired stopping criterion.

Evolutionary algorithms are not guaranteed to converge to global minima. How-
ever, they have been successful in many diverse applications. It is possible to improve
the performance of evolutionary algorithms by tuning the number of individuals in
a generation, the number of generations, and the relative probability of each genetic
operation. In the context of control, genetic algorithms are used to tune the parame-
ters of a control law with a predefined structure. For example, GA may be used to
tune the gains of a proportional-integral-derivative (PID) control law [271].
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Fig. 2.3 Genetic operations to advance one generation of parameters to the next in a genetic
algorithm. The probability of an individual from generation j being selected for generation j + 1
is related inversely to the cost function associated with that individual. The genetic operations are
elitism, replication, crossover, and mutation. Modified from Brunton and Noack, Applied Mechanics
Reviews, 2015 [43]
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2.1.3 Genetic Programming

Genetic programming (GP) [164, 166] is an evolutionary algorithm that optimizes
both the structure and parameters of an input–output map. In the next section, GP
will be used to iteratively learn and refine control laws, which may be viewed as
nonlinear mappings from the outputs of a dynamical system (sensors) to the inputs
of the system (actuators) to minimize a given cost function associated with the control
task.

The mapping discovered by genetic programming is represented as a recursive
function tree, as shown in Fig. 2.4 for the case of a control law b = K(s). In this
representation, the root of the tree is the output variable, each branching point is a
mathematical operation, such as +,−,×, /, and each branch may contain additional
functions. The leaves of the tree are the inputs and constants. In the case of MLC the
inputs are sensor measurements and the root is the actuation signal.

Genetic programming uses the same evolutionary operations to advance individ-
uals across generations that are used in genetic algorithms. The operations of repli-
cation, crossover, and mutation are depicted schematically in Fig. 2.5 for genetic
programming. As in other evolutionary algorithms, the selection probability of each
genetic operation is chosen to optimize the balance between exploration of new
structures and exploitation of successful structures.

In the sections and chapters that follow, we will explore the use of genetic program-
ming for closed-loop feedback control. In particular, we will show that using genetic
programming for machine learning control results in robust turbulence control in
extremely nonlinear systems where traditional control methodologies typically fail.
We will also generalize the inputs to include time-delay coordinates on the sensor
measurements and generalize the function operations to include filter functions to
emulate dynamic state estimation.

Fig. 2.4 Individual function
tree representation used in
genetic programming.
Modified from Brunton and
Noack, Applied Mechanics
Reviews, 2015 [43]
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Fig. 2.5 Genetic operations to advance one generation of function trees to the next generation
in a genetic program. The operations that advance individuals from one generation to the next are
crossover, mutation, and replication. In crossover, random branches from two individual expressions
are exchanged. In mutation, a branch is randomly selected and replaced with another randomly
generated branch. In replication, the individual is copied directly to the next generation. Modified
from Brunton and Noack, Applied Mechanics Reviews, 2015 [43]
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2.1.4 Additional Machine Learning Methods

There is a vast and growing literature on machine learning. This section only provides
a brief overview of some of the most promising methods that may be used in machine
learning control efforts. More extensive treatments may be found in a number of
excellent texts [30, 92, 168, 194]. In addition, there is a good overview of the top ten
methods in data mining [280].

The presentation on genetic programming above provides a high-level overview
of the method, which may be directly implemented for machine learning control. In
reality, there is an entire field of research expanding and developing these methods.
Genetic programming has been used to discover governing equations and dynamical
systems directly from measurement data [32, 220, 240]. There are variants on genetic
programming using the elastic net [185], which result in fast function identification.
It is also possible to use sparse regression [146, 266] to identify nonlinear dynamical
systems from data [44]; this method is related to the recent use of compressed sensing
for dynamical system identification [275].

Another promising field of research involves artificial neural networks (ANNs).
ANNs are designed to mimic the abstraction capabilities and adaptability found in
animal brains. A number of individual computational units, or neurons, are connected
in a graph structure, which is then optimized to fit mappings from inputs to outputs.
It is possible to train the network with stimulus by modifying connections strengths
according to either supervised or unsupervised reinforcement learning. There are
many approaches to modify network weights, although gradient search algorithms are
quite common [61, 129]. Neural networks have been used in numerous applications,
including to model and control turbulent fluids [95, 171, 189, 193]. Network-theoretic
tools have been applied more generally in fluid modeling recently [154, 195]. ANNs
have also been trained to perform principal components analysis (PCA), also known
as proper orthogonal decomposition (POD) [203], as well as nonlinear extensions of
PCA [157, 204].

Neural networks have proven quite adaptable and may be trained to approx-
imate most input–output functions to arbitrary precision with enough layers and
enough training. However, these models are prone to overfitting and require signifi-
cant amounts of training data. Recently, neural networks have seen a resurgence in
research and development with the associated field of deep learning [69, 78, 132].
These algorithms have shown unparalleled performance on challenging tasks, such
as image classification, leveraging large data sets collected by corporations such as
Google, etc. This is a promising area of research for any data-rich field, such as
turbulence modeling and control, which generates tremendous amounts of data.

There are many other important machine learning algorithms. Support vector
machines (SVMs) [242, 253, 259] are widely used because of their accuracy, simple
geometric interpretation, and favorable scaling to systems with high-dimensional
input spaces. Decision trees [222] are also frequently used for classification in
machine learning; these classifications are based on a tree-like set of decisions,
providing simple and interpretable models. Multiple decision tree models may be
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combined, or bagged, resulting in a random forest model [33]. Ensemble methods in
machine learning, including bagging and boosting, have been shown to have signif-
icantly higher classification accuracy than that of an individual classifier [83, 105,
237].

Many of the foundational methods in big data analysis [131] have been applied
largely to static data problems in artificial intelligence and machine vision. There is
a significant opportunity to leverage these techniques for the modeling and control
of dynamical systems. These methods may be used for clustering and categorical
decisions, dimensionality reduction and feature extraction, nonlinear regression, and
occlusion inference and outlier rejection. Machine learning is having transformative
impact across the scientific and engineering disciplines. There is tremendous oppor-
tunity ahead to employ machine learning solutions to modern engineering control.

2.2 MLC with Genetic Programming

Now we use genetic programming (GP) as a search algorithm to find control laws in
MLC. This section provides details about GP in a context that is specific to control.

2.2.1 Control Problem

Before applying any machine learning, it is necessary to pose the control problem as
a well-defined cost minimization. In particular, the performance of a given control
law is judged based on the value of a cost function J , and the machine learning
algorithms will serve to minimize this cost.

There are many ways to formulate a cost function in order to promote different
control objectives. In fact, cost function optimization is the basis of most modern
control approaches [93, 252], which will be discussed more in Chap. 3. Consider a
simplified cost function that depends on the state a and the actuation b:

J (a, b). (2.1)

We often assume that the effects of the state and actuation on the cost are separable:

J (a, b) = Ja + γ Jb, (2.2)

where Ja is a performance measure on the state of the system and Jb is a value
associated with the cost of actuation. The penalization parameter γ provides an
explicit tuning knob to give priority to either the actuation cost (γ large) or the state
cost (γ small). More objectives can be added to the cost function J by including
norms on the various transfer functions from inputs to outputs; these may promote
good reference tracking, disturbance rejection, noise attenuation, robustness, etc., and

http://dx.doi.org/10.1007/978-3-319-40624-4_3
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a good treatment of these choices is provided in [252]. In addition, the complexity
of the controller K may be penalized to avoid overfitting.

2.2.2 Parameterization of the Control Law

When using genetic programming for MLC, the control laws are represented as
recursive expression trees (also known as function trees), as shown in Fig. 2.6. These
control laws are the individuals that will populate a generation in genetic program-
ming. Expression trees are usually built from a number of elementary functions
which can take any number of arguments but return a single value; example function
nodes are +,−,×, /, sin, tanh, . . . The arguments of these functions may be leaves
or subtrees. In MLC, the root of the tree is the actuation signal b and the leaves are
components of the sensor vector s or constants.

The tree in Fig. 2.6 represents the function:

b(s1, s2) = cos(s1) + tanh((s1 × s2)/0.21) − 2.32, (2.3)

where s1 and s2 are the time-varying sensor values. It is useful to represent the
function tree as a LISP (LISt Processor) expression.

Several representations can be used to manipulate functions inside the genetic
programming architecture (e.g. trees, linear programming). We choose to use a tree-
like representation. Two main advantages of this representation are that expression

Fig. 2.6 An expression tree
representing the controller
function given by:
b = K(s) = cos(s1)+
tanh((s1 × s2)/0.21) − 2.32

Leaves

Root
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trees are readily interpretable, and they are easily synthesized and manipulated com-
putationally using a recursive language such as LISP or Scheme.

Equation (2.3) can be written as the LISP string in parenthesized Polish prefix
notation:

(− (+ (cos s1) (tanh (/ (× s1 s2) 0.21))) 2.32).

Though less readable than the expression tree, recursive algorithms can generate,
derive, manipulate, and evaluate these expressions. The generation process of any
individual control law starts at the root. Then a first element is chosen from the pool
of admissible basis functions and operators. If a basis function or operator is chosen,
new elements are added as arguments, and the process is iterated to include their
arguments until all branches have leaves.

This process of individual generation is subject to limitations. A given tree-depth
(the maximum distance between any leaf and the root) can be prescribed by pre-
venting the last branch from generating a leaf before the aforementioned tree-depth
is reached and by enforcing the termination of the branch in leaves when the tree-
depth is reached. Similarly it is possible to ensure that each branch reaches the same
given tree-depth which generates a full-density tree with the maximum number of
operations. MLC can implement any of these distributions, from fully random trees
to a given tree-depth distribution with a specified proportion of dense and less dense
individuals. The first generation starts with a distribution of rather low tree-depth (2
to 8) and an equal distribution (1:1) of dense and less dense individuals in the default
parameters of OpenMLC. This choice generally ensures enough diversity for the
creation of subsequent generations. The initially low tree-depth takes into account
that the genetic operations (see Sect. 2.2.7) have a tendency to make the trees grow.
This phenomenon is known as bloating of the trees. To enforce more diversity in the
population, any candidate individual is discarded if it already exists in the current
population.

2.2.3 Genetic Programming as a Search Algorithm

The flowchart for genetic programming is given in Fig. 2.7. An initial set (generation)
of Ni control laws (individuals) is evaluated according to the cost function J . Next,
successful individuals are selected to advance to the next generation and are evolved
by genetic operations: elitism, replication, crossover and mutation. This procedure
is repeated until a convergence or stopping criterion is met.

The implementation of genetic programming as a search algorithm for MLC is
shown in Fig. 2.8. In this schematic, control laws are expression trees that take sensor
outputs s of a dynamical system and synthesize actuation inputs b. These controller
individuals are optimized through the genetic programming algorithm.
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Fig. 2.7 Flowchart for the
genetic programming
algorithm

Advanced material 2.1 Operation protection.
It is important to note that not all functions are defined for all real-valued arguments. For
instance, the second argument of the division operator must not be zero and the argu-
ment of the logarithmic functions must be strictly positive. Thus, such functions must
be protected. When the translation from LISP is achieved using the OpenMLC toolbox
through the readmylisp_to_formal_MLC.m function, ‘(/ arg1 arg2)’ is interpreted as
‘my_div(arg1,arg2)’, where my_div.m defines the function:

my_div(arg1, arg2) = arg1

arg2
, if |arg2| > 10−3

= arg2

|arg2|
arg1

10−3 , if 0 < |arg2| < 10−3

= arg1

10−3 , if |arg2| = 0.

Similarly, ‘(log arg1)’ is interpreted as ‘my_log(arg1)’, where my_log.m defines the func-
tion:

my_log(arg1) = arg1

|arg1| log(|arg1|), if |arg1| > 10−3

= arg1

|arg1| log(10−3), if 0 < |arg1| < 10−3

= 0, if |arg2| = 0.

In case the interpretation of the LISP expression is carried out by another function, for example
on a real-time processing unit, these protections have to be implemented in order to avoid
unexpected behaviors. These protections can be easily changed by editing both surrogate
functions, or by defining another function to be called in theparameters.opset structure.
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Fig. 2.8 Model-free control design using GP for MLC. During the learning phase, each control
law candidate is evaluated by the dynamical system or experimental plant. This process is iterated
over many generations of individuals. At convergence, the best individual with the smallest cost
function value (in grey in the GP box) is used for real-time control

2.2.4 Initializing a Generation

In genetic programming an entire population of individuals forms a generation, and
these individuals compete to advance to future generations. A population contains
Ni individuals that must be initialized. To form an expression tree, the initialization
algorithm works from the root to the trees. The principle is to work from one seed
(a marker which indicates where the tree is supposed to grow) or Nb seeds (if the
actuation input b has multiple components), decide on a node (function/operation,
or leaf), add as many new seeds as necessary (if this is an operation or function,
include as many seeds as arguments) and recursively call the function that grows
the tree until all new seeds have been generated. The process stops once all seeds
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have been replaced by leaves. Those leaves are chosen between randomly generated
constants and one of the Ns sensors in s. This algorithm can be configured so that
some statistical properties of the population can be specified:

Tree-depth: If an operation or a leaf is selected through a probabilistic process,
it is possible to prescribe the minimal and maximal tree-depth of the trees by
forcing or forbidding the creation of leaves according to the tree-depth and/or the
existence of other leaves at said depth.

Density: It is possible to prescribe a specific tree depth for all leaves. This is
achieved by forbidding any leaf before a given depth, and forcing leaf selection at
that depth. The resulting individuals possess the maximal number of operations
possible (modulo the number of arguments of the selected operations) for the
prescribed tree depth. Such an individual is referred to as a full (density) individual.

The initial population corresponds to the first exploration of the search space.
As such, this population has a crucial impact on the following steps of the search
process: future generations will converge around the local minima found in the initial
generation. Therefore, it is important that this population contains as much diversity
as possible. A first measure is to reject any duplicate individual in the population.
Diversity is also enforced using a Gaussian distribution of the tree-depth (between 2
and 8 by default in OpenMLC), with half the individuals having full density.

2.2.5 Evaluating a Generation

After every new generation is formed, each individual must be evaluated based on
their performance with respect to the regression problem. The value of the cost

Advanced material 2.2 Creation algorithm pseudo-code.
The function that generates expression trees as LISP expressions in OpenMLC is gen-
erate_indiv_regressive.m. As any expression tree manipulation function, the creation
algorithm is auto-recursive. The principle is to work from a seed, decide on a node
(function/operation, or leaf), add as many seeds as necessary (if this is an operation or
function) and call the function back as many time as new seeds have been generated:
1 : new_LISP=grow_tree(old_LISP,parameters) % declaration
2 : find first seed in old_LISP, so that old_LISP=‘part1 seed part2’
3 : decide if the next node is an operation or a leaf

if it is a leaf: replace the seed with either a constant, either a sensor
and return new_LISP=‘part1 leaf part2’

if it is an operation: choose one randomly (called ‘op’) and replace seed so that:
new_LISP=‘part1 (op seed) part2’ if ‘op’ takes one argument
new_LISP=‘part1 (op seed seed) part2’ if ‘op’ takes two arguments

4 : recursively call back new_LISP=grow_tree(new_LISP,parameters) as many times as
new seeds have been added

5 : return new_LISP
An expression tree with Nb independent subtrees (corresponding to Nb actuation inputs) can
be created using the tree growing function on ‘(root seed repeated Nb times )’.
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Advanced material 2.3 Effect of generation parameters in the first population diversity.
The tree-depth distribution is shown for each initialization method for the first generation
(left). The histograms of the number of operations for each tree-depth is also shown (right).
The average is marked by a bullet. These graphs are obtained with one instance of a population
generation with default OpenMLC object properties except for the initialization method which
is indicated in each graph. One indicator of diversity is the distribution of operations in the
trees. If multiplying the different tree depth is a good factor to enforce diversity, the natural
growth of the average tree-depth as new generations are evolved (a phenomenon known as
bloat) indicates that it is better to keep low tree-depth in the first generation.
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function J in Eq. (2.1) is computed for each individual. In MLC, this evaluation
corresponds to the individual being used as the control law for the dynamical system
under consideration. This evaluation results in a single value J , which is the result
of Eq. (2.1) for the specific individual being evaluated.

A major complication encountered with experiments (or even some noisy numer-
ical systems) is the fact that, contrary to deterministic systems, the re-evaluation of
one individual does not necessarily return the same cost function value as a previ-
ous evaluation. A large error on the value, either due to a measurement error or an
exceptional performance of a non-robust control law can lead to a non-representative
grading of the control law. As explained throughout the book, the search space is
primarily explored around the best-performing individuals. If an intrinsically low-
performing individual gets a mistakenly good evaluation, this may be a significant
setback. Thus, all individuals are evaluated even if they have already been evaluated
in a previous generation, and the best individuals undergo a re-evaluation. By default
in OpenMLC, the five best individuals are each re-evaluated five times, and their cost
function is averaged. This procedure ensures that the best performing individuals are
more carefully ranked so that the search process is not misdirected.

2.2.6 Selecting Individuals for Genetic Operations

After the evaluation of each individual, the population evolution starts. In order to fill
the next generation, genetic operations (see Sect. 2.2.7) are performed on selected
individuals. The selection procedure is at the heart of any evolutionary algorithm as
it determines the genetic content of the following generation. The selection process
employed by default is a tournament. Each time an individual needs to be selected for
a genetic operation, Np unique individuals are randomly chosen from the previous
generation to enter the one-round tournament. From this set of individuals, the one
with the smallest cost function value is selected. As the population size Ni is fixed, Ni

selection tournaments are run each time a new generation is created. The population is
ranked by decreasing cost function value. If we discard uniqueness of the individuals
and consider Ni � Np > 1, the probability of individual i winning a tournament
is ((Ni − i)/(Ni − 1))Np−1. On average, each individual will enter Np tournaments.
Each individual is sorted by their ranking, so that individual i has the i th lowest cost
function value; we define x = i/Ni for each individual so that x ∈ [0, 1]), where
x = 0 is the best individual and x = 1 is the worst individual. If an individual is
ranked i = x × Ni , then its genetic content will contribute on average roughly to
Np × (1 − x)Np−1 new individuals. A standard selection parameter sets Np = 7
and ensures that only the first half of the ranked generation contributes consistently
to the next generation. Lower-performing individuals can still contribute, but these
are rare events. In this selection procedure, choosing Np sets the harshness of the
selection. On the other hand, this selection procedure does not take into account the
global distribution of the cost function values, as in other selection processes such as
a fitness proportional selection. If an individual performs much better than the rest
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of the population it will not have a better selection chance than an individual that
barely performs better than the rest of the population. This choice ensures that the
diversity in the population does not disappear too fast with an associated trade-off in
convergence speed.

2.2.7 Selecting Genetic Operations

Four kinds of genetic operations are implemented: elitism, replication, mutation and
crossover.

Elitism: The Ne best individuals of the evaluated population are copied directly
to the next generation. This operation does not go through a selection procedure
and ensures that the best control laws stay in the population. Once the elitism
process is finished, Ni − Ne individuals have to be generated through replication,
mutation and crossover. The probability of each of these operations are Pr , Pm

and Pc, respectively, with Pr + Pm + Pc = 1.
Replication: The selected individual is copied to the next generation.
Mutation: There are four mutation operations: Cut and grow replaces an arbi-

trarily chosen subtree by a randomly generated new subtree. For that, the same
procedure is used as in the creation of the first generation. Shrink replaces an
entire randomly chosen subtree by a randomly chosen leaf (constant or sensor).
Hoist replaces the tree by a randomly chosen subtree. If this tree corresponds
to a MIMO control law with Nb actuation inputs, each control law has a 1/Nb

chance to be mutated if the hoist mutation is chosen. Reparametrization sets a
50 % chance for each constant to be randomly replaced with a new value. All of
these mutations are displayed in Figs. 2.9 and 2.10.

Advanced material 2.4 Fitness proportional selection.
Fitness proportional selection is another popular process for selecting individuals for genetic
operations. The inverse of an individual’s cost Ji = J (Ki ) is a natural measure of its desir-
ability. It goes to infinity as the optimal value zero is reached. The probability of the section
of the i th individual is set proportional to this desirability

Pi = J−1
i

∑Ni
j=1 J−1

j

. (2.4)

If one individual performs much better than the rest of the population, it will be selected
more often in the same proportion, thus encouraging optimization around the best performing
individuals while still allowing sub-optimal individuals to be selected. However, diversity can
disappear rapidly if an individual performs one or several orders of magnitude better than the
rest of the population. This is an undesirable feature which we avoid by a selection based on
the relative ordering.
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(a)

(b)

Fig. 2.9 Two of the four types of mutations implemented in MLC: (a) cut and grow, (b) shrink

Crossover: uses two selected individuals and exchanges one randomly chosen
subtree between them (see Fig. 2.11).

Replication ensures some stability of the convergence process: it guarantees that
a part of the population stays in the vicinity of explored local minima of the search
space, keeping potentially useful mechanisms in the population and further exploit-
ing them before they are discarded. Crossover and mutation are responsible for the
exploitation and exploration of the search space, respectively. As we progress among
the generations, the probability to cross similar individuals increases: the best indi-
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(c)

(d)

Fig. 2.10 Two of the four types of mutations implemented in MLC: (c) Hoist and
(d) re-parameterization

vidual will propagate its genetic content Np times on average. If this successful
genetic content allows the concerned individuals to stay in the first positions of the
ranking, it will be replicated about N k

p×Pc times after k generations. Then crossovers
of individuals selected in the top of the ranking will soon cross similar individuals
and explore the vicinity of the dominant genetic content. On the other hand, muta-
tions introduce new genetic content in the population, hence allowing large-scale
exploration of the search space. Figure 2.12 illustrates how an evolutionary algo-
rithm explores the search space of a two-dimensional problem with local minima:
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Fig. 2.11 Crossover
example. The selected
individuals of a considered
generation (left) exchange
subtrees to form a new pair
in the next generation (right)
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the association of these operations enables exploitation around the local minima
while still exploring the search space for better solutions.

2.2.8 Advancing Generations and Stopping Criteria

There are no fool-proof general rules to choose optimal parameters for evolutionary
algorithms. A common practice is to check the optimality of the solution offered by
genetic programming by reproducing the process a number of times using different
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Fig. 2.12 Conceptual 2-dimensional representation of the search process of evolutionary algo-
rithms. The level curves display the geometry of the cost function and its local minima and maxima.
The arrows follow one branch of the lineage of one individual (displayed by a black point) that
leads to the global minimum of the cost function. The exploitation of the local minima is achieved
by crossovers while the large-scale exploration of the search space is achieved by the mutations

sets of parameters. This way, guiding statistics can be obtained. In the case of exper-
imental turbulence control, one is more interested in finding an effective control law
than in determining an optimal search algorithm. The main impact of modifying
parameters is on the ratio between exploitation (i.e. convergence) and exploration of
the search space. Monitoring the evolution of the evaluated populations is the best
way to fine-tune the MLC process. Now, we discuss the role of the MLC parameters:

• Population size Ni : more individuals in the first generation will result in more
exploration of the search space. On the other hand, a large initial population
requires more evaluation time without any evolutionary convergence. Let us con-
sider 1000 evaluations. If only the first generation is evaluated, then it is equivalent
to a Monte Carlo process. Alternatively, one could devote 1000 evaluations to 20
generations with 50 individuals in each generation. This implies 20 iterative refine-
ments of the best individuals through evolutionary operations.

• Genetic operation probabilities (Ne/Ni , Pr , Pm , Pc): Elitism is encouraged as it
ensures that the Ne best performing individuals will remain in the population.
Replication, mutation and crossover probabilities parametrize the relative impor-
tance between exploration and exploitation (Fig. 2.13). A large mutation rate Pm

implies large-scale exploration and thus population diversity. If all individuals in
the population share a similar expression and have similar costs then the muta-
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Fig. 2.13 Probability selection for the genetic operations. There is no globally optimal parameter
selection. Depending on the problem, diversity or convergence needs to be modified. The range
of parameters used in the present study is represented by the black area. Hatched areas represent
the parametrical space where essential aspects of the evolutionary algorithm are endangered with
volatile population translating in previous winning options to be forgotten once a better solution is
found (not enough replications), low convergence (not enough crossovers) or low exploration (not
enough mutations)

tion rate should be increased. On the other hand, the crossover rate will impact
the convergence speed. If the individuals are different and the cost function value
histogram does not show a peak around the lowest value, then the convergence is
not sufficiently rapid and the crossover probability should be increased. Finally,
replication ensures that a given search space area will be explored during a certain
number of generations. This parameter will at the same time ensure diversity and
exploration of different areas.

• The harshness of the selection procedure also influences the diversity of the next
generation. The number of individuals Np that enter a tournament directly influ-
ences the number of individuals that will contribute to the next generation. Reduc-
ing Np increases the diversity while increasing it will accelerate the convergence.

• The choice of the elementary functions is intimately linked to the regression prob-
lem. This choice should be determined in concordance with the choice of the
sensors and actuators.

• The maximum number of generations is eventually determined by the available
testing time. A stopping criterion can end the iterations prematurely, for instance



2.2 MLC with Genetic Programming 33

if the optimal solution is reached (J = 0) or if the average and minimum of the
cost function distribution converge.

GP experts usually recommend a high rate of crossover and a low rate of mutation
with a large initial population, though specific values depend on the problem. These
choices, clearly aimed to obtain a fast convergence, are possible when the evaluations
can be parallelized. In experiments, however, the total time to evaluate a generation
of individuals is critical and one cannot afford a large population. The convergence
of the cost function evaluation is also affected by the measurement error. A good
compromise in experiments is to deal with reduced populations (on the order of
50–500 individuals) associated with a high mutation rate (from 25 to 50 %). It is
simpler to keep these values constant during the course of each experiment, but
further performance improvement can be achieved by adapting them with respect to
the phase (exploration or exploitation) of the learning process.

Throughout the book many examples of applications of MLC to different control
problems can be found, from numerical dynamical systems to experiments, and their
specific implementation using OpenMLC is discussed. Chapter 7 is dedicated to
providing the reader with best practices for the use of MLC.

2.3 Examples

As outlined above, Machine Learning Control (MLC) formulates control design as
a regression problem: Find a law which minimizes a given cost function. Genetic
Programming (GP) is a regression tool and key enabler of MLC. In the following,
we illustrate genetic programming for a simple two-dimensional data fit (Sect. 2.3.1)
and and a control problem (Sect. 2.3.2). We ease the replication of the results by
employing OpenMLC, a freely available Matlab® toolbox designed for MLC (see
the Appendix for instructions about how to download and install). OpenMLC has
been used for most numerical and experimental control problems of this book.

2.3.1 Fitting a Function Through Data Points

In the first example, we search for a one-dimensional function passing as close as
possible to given data points.

Problem Formulation

Let us consider the 201 points in the plane:

si = i/10 (2.5a)

bi = tanh(1.256 si ) + 1.2, i = −100 . . . 100. (2.5b)

http://dx.doi.org/10.1007/978-3-319-40624-4_7
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The goal is to find a function s → b = K (s) that goes through these points as close
as possible using GP. A canonical cost function reads

J = 1

201

100∑

i=−100

(bi − K (si ))
2 . (2.6)

We do not assume a particular structure of the function K , like an affine, constant-
linear-quadratic or polynomial structure. This excludes the least-mean-square
approach for parameter identification.

In the following, we describe how GP solves the regression problem

K (s) = argmin
K ′(s)

J
[
K ′(s)

]
, (2.7)

i.e. finding a function b = K (s) which minimizes the cost function (2.6).
This example is implemented as the default toy problem for OpenMLCwhich will

be used throughout the section.

Code 2.1 Creation of the default regression problem

clear all
close all

mlc=MLC % Creates a MLC object with default values that
% implements the simple regression problem.

Problem Solution

We take typical parameters for GP. These are also the default parameters of OpenMLC
(Table 2.1).

Table 2.1 Parameters for MLC with genetic programming for example of fitting a function through
data points

Parameter Value

Ni 1000

Pr 0.1

Pm 0.2

Pc 0.7

Np 7

Ne 10

Node functions +,−,×, /, exp, log, tanh
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Our ‘plant’ is then written as follows:

Code 2.2 Evaluation function for the first regression problem (2.7)

function J=toy_problem(ind ,parameters ,i,fig)

%% Creation of the points to fit.
s= -10:0.1:10;
b=tanh (1.256*s)+1.2;

%% Initialisation of b_hat as a vector.
b_hat=b*0;

%% Evaluation.
% Evaluation is always encapsulated in try/catch.
% Structure to account for the unpredictible.

try
% Translation from LISP.

idv_foraml=readmylisp_to_formal_MLC (ind ,parameters);
idv_formal=strrep(m,’S0’,’s’); % Replace S0 leaf with

variable s
% Obtain the estimated s.

eval([’b_hat=’ idv_formal ’;’])
% Obtain the cost function value.

J=sum((b-b_hat).^2)/length(b);
catch err

% If something goes wrong , asign a bad value.
J=parameters.badvalue;
fprintf(err.message);

end

The code 2.2 comprises all the necessary steps needed in order to build the problem
with corresponding cost function in OpenMLC. The evaluation function takes an
individual

b̂ = K̂ (s) (2.8)

as argument and returns a cost function value J . In addition, GP parameters enter as
arguments.

One critical step is the translation of the individual from a LISP expression to
something Matlab® can use as a function. This is realized through the function
readmylisp_to_formal_MLC which recursively interprets each element of
the tree. Generically all inputs are numbered S0, S1 to SNs . Here, only one input
is declared for the function that is to be learned. Thus only functions involving S0
are created. For the sake of readability, we replace S0 by s, so that the strings
created are functions of s. Once the individual is interpreted, it can be used to
approximate the data with the mapping (2.8) and compute the corresponding cost
function.
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MLC Run and Results

Here GP is launched for 50 generations using

mlc.go(50);

or

mlc.go(50,1);

to have graphical output. At the end of the 50th generation, typing

mlc

returns the best individual, its cost function value and other statistics:

After generation 50:
Best individual:
(+ (sin (+ (sin (sin (tanh (/ (/ S0 -2.511) (sin -8.741)))))
(sin (tanh (/ (/ S0 -2.629) (sin -8.741)))))) (log (log (+
(tanh (+ (sin (tanh (/ (sin (/ S0 -2.511)) (* -3.802 7.167))))
(tanh (tanh (+ (sin (+ (sin -8.741) (sin -8.741))) (sin 6.774))))))
(* -3.802 7.167)))))

Best J (average over 3 occurrence(s)): 2.380030e-06

This implies that the returned function is much more complicated than the actual
function and produces an average error of 2.38×10−6. Note that we did not penalize
complexity of the individuals.

Typing

mlc.show_best_indiv;

will additionally display the original and learned relationship between the dataset
used for regression (Fig. 2.14).

2.3.2 MLC Applied to Control a Dynamical System

The second study exemplifies MLC for control design of a noise-free, linear, one-
dimensional ordinary differential equation, arguably the most simple example of
Eq. (1.1).

http://dx.doi.org/10.1007/978-3-319-40624-4_1
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Fig. 2.14 Best individual of the regression problem (2.7) after 50 generations, obtained with
‘mlc.show_best_indiv’ on the ‘toy_problem’ regression problem

Problem Formulation

We investigate the ordinary differential equation

da

dt
= a + b , (2.9a)

s = a , (2.9b)

b = K (s) , (2.9c)

with the initial condition
a(0) = 1. (2.10)

The cost function to be minimized penalizes a deviation from desired state a0 = 0
and actuation,

J = 1

T

∫ T

0

[
a2 + γ b2

]
dt. (2.11)

Here, T is the evaluation time and γ is a penalization coefficient for the cost of
actuation.
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Table 2.2 Parameters for
MLC with genetic
programing for simple control
design example

Parameter Value

Ni 50

Pr 0.1

Pm 0.4

Pc 0.5

Np 7

Ne 1

Node functions +,−,×, tanh

This problem is set-up in the OpenMLC script unidim_DS_script.m and the
associated object can be instantiated by calling:

mlc=MLC(’unidim_DS_script ’);

This command implements the new control regression problem

K (s) = argmin
K ′(s)

J
[
K ′(s)

]
, (2.12)

i.e. finding a control law which minimizes the cost function (2.11).
The search space for the control law contains compositions using operations taken

from (+,−,×, tanh). This includes arbitrary polynomials and sigmoidal functions.
A full list of GP parameters used (Table 2.2) can be obtained by typing:

mlc.paramters

The most important parameters are given in Table 2.2.

Problem Implementation
The evaluation function for this simple dynamical system control problem is provided
under the name unidim_DS_evaluator.m.

Code 2.3 Evaluation function for control regression problem (2.12)

function J=unidim_DS_evaluator(ind ,mlc_parameters ,i,fig
)

%% Obtaining parameters from MLC object.
Tf=mlc_parameters.problem_variables .Tf;
objective=mlc_parameters .problem_variables .objective;
gamma=mlc_parameters.problem_variables .gamma;
Tevmax=mlc_parameters .problem_variables .Tevmax;

%% Interpret individual.
m=readmylisp_to_formal_MLC (ind);
m=strrep(m,’S0’,’y’);
K=@(y)(y);
eval([’K=@(y)(’ m ’);’]);
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f=@(t,y)(y+K(y)+testt(toc ,Tevmax));

%% Evaluation
try % Encapsulation in try/catch.
tic
[T,Y]= ode45(f,[0 Tf],1); % Integration.
if T(end)==Tf % Check if Tf is reached.

b=Y*0+K(Y); % Computes b.
Jt=1/Tf*cumtrapz(T,(Y-objective).^2+ gamma*b.^2);%

Computes J.
J=Jt(end);

else
J=mlc_parameters.badvalue; % Return high value if

Tf is not reached.
end
catch err

J=mlc_parameters .badvalue % Return high value if
ode45 fails.

end

if nargin >3 % If a fourth argument is provided , plot
the result

subplot (3,1,1)
plot(T,Y,’-k’,’linewidth ’ ,1.2)
ylabel(’$a$’,’interpreter ’,’latex’,’fontsize ’ ,20)
subplot (3,1,2)
plot(T,b,’-k’,’linewidth ’ ,1.2)
ylabel(’$b$’,’interpreter ’,’latex’,’fontsize ’ ,20)
subplot (3,1,3)
plot(T,Jt ,’-k’,’linewidth ’ ,1.2)
ylabel(’$(a-a_0)^2+\ gamma b^2$’,’interpreter ’,’latex’

,’fontsize ’ ,20)
xlabel(’$t$’,’interpreter ’,’latex’,’fontsize ’ ,20)

end

First of all we retrieve the parameters which are stored in the structure

mlc.parameters.problem_variables

This structure is empty by default and can be used to specify variables that are
specific to the problem. Here, the evaluation time T , the penalization coefficient γ ,
the desired state a0 = 0 and the integration time Tmax are available from the structure
problem_variables and retrieved in the first lines of the evaluation function.
This allows one to parametrize the problem, so that running the same problem with
different values for the parameters can be implemented in a loop.

The individual is interpreted as a control law using the OpenMLC toolbox function
readmylisp_to_formal_MLC. This transforms the LISP string to a Matlab®

expression string if copied in the console. By default, sensors are named S0, S1, . . .,
Sna . As in the first example, we replace S0 by the sensor symbol s, with a strrep
(string replacement) parsing. Finally, a symbolic function is created inside a call to
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eval that allows one to use the formal expression in the individual string to define
the control function.

The dynamical system is then written as a actuated dynamics F defining the
derivative of the state a, including the control law, and a OpenMLC toolbox function
testt(toc,Tevmax) which returns an error when the time elapsed for this eval-
uation is higher than the time specified in Tevmax. This works with the placement
of the tic function at the beginning of the evaluation function.

The integration of the controlled dynamical system is realized in a try/catch struc-
ture which allows error management. As OpenMLC will allow any combination of
the elementary functions to be tested, it is likely that many systems will diverge or
cause integration errors. The integration of the controlled dynamics becomes expen-
sive with complex control laws. Here, a generation contains 1000 individuals to
test. Hence, a testt function is provided for numerical problems, so that an error
is automatically generated when Tevmax seconds have passed in the real world.
When an error is generated, the program continues in the catch section, where a high
value specified in parameters.badvalue is attributed to the individual and the
evaluation is stopped.

If no error is generated, the J value is computed according to Eq. (2.11) and is
stored in the variable J , which will be sent back to the OpenMLC object.

This could be the end of the evaluation function, but OpenMLC allows the use of
an optional fourth argument to force a graphic output. This can be used to observe
one specific individual. For instance,

unidim_DS_evaluator(mlc.population (4).individuals {5},
mlc.parameters ,1,1)

will display the fourth individual of the fifth generation. If the problem is launched
using:

mlc.go(15,1)

A graphical output will be generated for the best individual of each generation. The
best individual is represented according to the section included in theif nargin>4
structure (if the number of arguments inputed is strictly larger than 3). Here, the state,
the control and the cost function integration are plotted against time.

MLC Run and Results

We choose 15 generations to solve the control problem. MLC is launched using

mlc.go(15);

Typing:

mlc

returns the best individual and statistics such as its cost function value:
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Fig. 2.15 Best individual example after 15 generations, obtained with ‘mlc._show_best_indiv’ on
the ‘unidim_DS_evaluator’ control problem. The red continuous line shows the optimal control
(see Chap. 3) for this control problem

After generation 15:
Best individual:
(* (* 3.128 S0) (tanh (tanh -6.613)))
Best J (average over 7 occurrence(s)): 2.437028e-01

Once again, typing:

mlc.show_best_indiv

will provide the graphs specified in the evaluation function for the best individual
(Fig. 2.15). The time-dependent cost function

J (t) = 1

T

∫ t

0

[
a2(τ ) + γ b2(τ )

]
dτ (2.13)

quantifies the contribution of its integrand during time [0, t] to Eq. (2.11). Note that
J (t) must be monotonically increasing from 0 to J (T ) = J , as the normalization
with 1/T is fixed and Eq. (2.13) does not define a sliding-window average.

OpenMLC also contains methods to analyze the whole evolution process. For
instance,

http://dx.doi.org/10.1007/978-3-319-40624-4_3
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mlc.show_convergence

displays a succession of histograms of the cost function values for each generation
(see Fig. 2.16). For the default values (Fig. 2.16a, b), 1000 bins are created with
a logarithmic progression from the minimal to the maximal value of J within all
generations (excluding values equal or above mlc.parameters.badvalue).
Section 7.4.1 provides a detailed description. The colormap reflects the ordering
of individuals by cost function, not by the quantitative values. Thus, the 2D-view
(Fig. 2.16a, c) illustrates the J values of the individuals while a 3D-view (Fig. 2.16b,
d) reveals also the population density associated with J -values. The detailed map is
obtained by the command:

J

j
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%
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p.
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J
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j J

%
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Fig. 2.16 Successive histograms of the population repartition in the cost-function value space.
(a, c) (detail): Top view. Well performing individuals were obtained in the first generation and no
significant progress has been achieved after the 4th generation. (b, d) (detail): 3D view. Progressively
the population sees a large proportion around the best individuals (d) while it can be observed that
some diversity is kept (b). Generated using mlc.show_convergence, parameters in text

http://dx.doi.org/10.1007/978-3-319-40624-4_7
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mlc.show_convergence (50,0,1,1,3)

Most evolutive processes of dynamical systems will feature similar behaviors and
properties:

• The progression is achieved by successive jumps. Once a better individual is found,
it is used many times for the evolution and rapidly an island around its J -value
is formed. Then, a better individual is found and the population gradually shifts
toward the better one.

• Some diversity is kept and some individuals and/or other islands are found in the
graph for every generation.

• There is one streak which is present for all generations, though it is far from
optimal: these are the many incarnations of the zero-individual. The zero can be
created in many ways: subtraction of the same subtree, multiplication by zero, etc.
Each generation can be expected to create such zero-individuals.

• Potentially other far-from-optimal islands will be present for other generations: it
can be saturated individuals if you impose, for instance, too narrow bounds on the
actuation command, or other problem specific phenomena.

i

j

J

Fig. 2.17 Genealogy of the best individual. All individuals are ranked by performance. The best
individual is linked to its parent(s). Color indicates the process: yellow is elitism, red is mutation,
green is replication and blue is crossover. The background colormap indicates the J -values for the
individuals of index i in generation j . It appears that the best individual after 15 generations has
been found from the 10th generation, and that the global population is not evolving any more
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Another way to check the convergence process is by typing:

mlc.genealogy (15,1)

which shows the ancestors of the best individual of the 15th generation (Fig. 2.17).
Individuals are linked by parenthood and colors show the genetic operation that
resulted in the next individual: yellow for elitism, red for mutation, blue for crossover
and green for replication. More importantly, the background shows which proportion
of the population is in a given order of magnitude of the cost function.

mlc.show_convergence and mlc.genealogy both are customizable.
Full options can be found by typing:

help MLC/show_convergence
help MLC/genealogy

2.4 Exercises

Exercise 2–1: Transform the example from Sect. 2.3.1 in order to achieve a surface
regression:

ri = i/10

s j = j/10

bi, j = tanh(1.256 ri si ) + 1.2 sin(si ), i, j ∈ {−100 . . . 100}.

Exercise 2–2: Transform the example from Sect. 2.3.2 in order to learn b = K (a)

so that the following dynamical system is stabilized to a fixed point:

da

dt
= a

[
a

10
− a2

10000

]

+ b

b = K (a).

Exercise 2–3: Stabilize the following Lorenz system to each of its three fixed
points using MLC:

da1

dt
= σ (a2 − a1)

da2

dt
= a1 (ρ − a3) − a2

da3

dt
= a1a2 − βa3 + b

b = K (a1, a2, a3),

with σ = 10, β = 8/3 and ρ = 28.
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(a) Determine the three fixedpoints.
(b) Write the three cost function associated to the stabilization of each of the fixed

points.
(c) Run MLC for each of the cases.

2.5 Suggested Reading

Texts

(1) Learning from Data, by Y. S. Abu-Mostafa, M. Magndon-Ismail, H.-T. Lin,
2012 [2].
This book is an exquisite introduction into the principles of learning from data
and is highly recommended as a first reading.

(2) Pattern Classification, by R. O. Duda, P. E. Hart, and D. G. Stork, 2000 [92].
This classic text provides a serious introduction to machine learning and classi-
fication from the probabilistic perspective.

(3) Pattern Recognition and Machine Learning, by C. Bishop, 2006 [30].
This text provides a complete overview of machine learning with a self-contained
prior on probability theory. Bayes’ theory is highlighted in this text.

(4) Machine Learning: a Probabilistic Perspective, by K. P. Murphy, 2012 [194].
This comprehensive text describes automated methods in machine learning that
may be applied to increasingly big data. There are numerous examples using
methods that are computationally available.

(5) Genetic Programming: On the Programming of Computers by Means of
Natural Selection, by J. R. Koza, 1992 [164].
This seminal text provides a complete overview of the theory of genetic program-
ming. This material has since become the gold standard evolutionary algorithm.

(6) Genetic Programming: An Introduction, by W. Banzhaf, P. Nordin, R. E.
Keller, and R. D. Francone, 1998 [17].
This text provides an excellent introduction to genetic programming and its
applications.

Seminal Papers

(1) Top 10 algorithms in data mining, by X. Wu et al., Knowledge and Information
Systems, 2008 [280].
This paper provides an excellent description of ten of the most ubiquitous and
powerful techniques in machine learning and data mining that are in use today.

(2) A tutorial on support vector regression, by A. J. Smola and B. Schölkopf,
Statistics and Computing, 2004 [253].
This paper describes the support vector regression, which has become one of the
highest performing classifiers in machine learning.
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(3) Random forests, by L. Breiman, Machine learning, 2001 [33].
This paper describes the natural generalization of decision trees: random forests.
In this framework, an ensemble of decision trees is used to improve classification
performance.

2.6 Interview with Professor Marc Schoenauer

Professor Marc Schoenauer is Principal Senior Researcher (Directeur de Recherche
1ére classe) at INRIA, the French National Institute for Research in Computer Science
and Control. He graduated at Ecole Normale Supérieure in Paris, and obtained a
PhD in Numerical Analysis at Université Paris 6 in 1980. From 1980 until Aug.
2001 he has been a full time researcher with CNRS (the French National Research
Center), working at CMAP (the Applied Maths Laboratory) at Ecole Polytechnique.
He then joined INRIA, and later founded the TAO team at INRIA Saclay in September
2003 together with Michèle Sebag. Marc Schoenauer has been working in the field of
Evolutionary Computation (EC) since the early 90s, more particularly at the interface
between EC and Machine Learning (ML). He is author of more than 130 papers in
journals and major conferences of these fields. He is or has been advisor to 30 PhD
students. He has also been part-time Associate Professor at Ecole Polytechnique in
the Applied Maths Department from 1990 to 2004.

Marc Schoenauer is chair of the Executive Board of SIGEVO, the ACM Special
Interest Group for Evolutionary Computation. He was Senior Fellow and member
of the Board of the late ISGEC (International Society of Genetic and Evolutionary
Computation), that has become ACM-SIGEVO in 2005. He has served in the IEEE
Technical Committee on Evolutionary Computation from 1995 to 1999, and is a
member of the PPSN Steering Committee. He was the founding president (1995–
2002) of Evolution Artificielle, the French Society for Evolutionary Computation,
and has been president of the French Association for Artificial Intelligence (2002–
2004). Marc Schoenauer has been Editor in Chief of Evolutionary Computation
Journal (2002–2009), is or has been Associate Editor of IEEE Transactions on
Evolutionary Computation (1996–2004), Theoretical Computer Science—Theory of
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Natural Computing (TCS-C) (2001–2006), Genetic Programming and Evolvable
Machines Journal (1999–now), and the Journal of Applied Soft Computing (2000–
now), and is Acting Editor of Journal of Machine Learning Research (JMLR) since
2013. He serves or has served on the Program Committees of many major conferences
in the fields of Evolutionary Computation and Machine Learning.

Authors: Dear Marc, you have pushed the frontiers of evolutionary algorithms by
numerous enablers. You proposed one of the first mechanical engineering applica-
tions of genetic programming, namely identifying the behavioral law of materials.
Many readers of our book are from fluid mechanics with little background in evo-
lutionary algorithms. Could you describe the need for evolutionary algorithms
and the particular role of genetic programming? How did you get attracted to
genetic programming shortly after Koza’s discovery in 1992?

Prof. Schoenauer: First of all, let me state that the work you refer to dates back
20 years now. Furthermore, it was a team work, in collaboration with Michèle
Sebag on the algorithmic side, François Jouve on the numerical side, and Habibou
Maitournam on the mechanical side.
To come back to your question, the Genetic Programming motto—write the
program that writes the program—would be appealing to any programmer who
wouldn’t call it crazy. I got interested in Evolutionary Computation after hearing a
talk by Hugo de Garis in 1992 [77], who evolved a controller for walking humanoid
stick-legs. I realized the potentialities of evolution as a model for optimization for
problems which more classical methods could not address. Remember that I was
trained as an applied mathematician.
The identification of behavioral laws, like many inverse problems, was one such
problem. However, it should be made clear that applied mathematicians also make
continuous progresses, solving more and more problems of that kind—though also
unveiling new applications domains for evolutionary methods.

Authors: How would you compare genetic programming with other regression
techniques for estimation, prediction and control, e.g. linear or linear-quadratic
regression, neural networks, genetic algorithms, Monte-Carlo methods and the
like.

Prof. Schoenauer: This is a tricky question, especially in these days of Deep
Neural Networks triumphs in image and video processing, in games, etc.
One usual argument for genetic programming compared to other regression tech-
niques is the understandability of the results. It is true that there are several exam-
ples of such understandable results, starting with Koza’s work on digital circuit
design [165] (and including our findings in behavioral laws). However, many
other applications in genetic programming result in rather large trees, and their
interpretation is more problematic. Some interesting work by Hod Lipson [180]
and Tonda et al. [110] demonstrate that it should be possible to preserve this
advantage. Nevertheless, in most cases, the user has to choose how to handle the
trade-off between precision and concision—and if precision is preferred, then
genetic programming might not be the best choice (keeping in mind that as of
today, all such claims are problem-dependent).
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Authors: Which advice would you give a fluid dynamicist for shortening the learn-
ing time with machine learning control? Which enablers and show-stoppers do
you see?

Prof. Schoenauer: My first advice would be to start with what they know (from
fluid mechanics and applied maths), and clearly state the limits of the stan-
dard methods. From there on, Machine Learning or Evolutionary Computation
might be the solution they are looking for. Then they should consider different
approaches, at least genetic programming and neural network-based approaches
(note that there are very nice results too that hybridize both, as mentioned). And
overall, if choosing such non-traditional approach, they should consider all sim-
plifying hypotheses that they have made when trying to solve the problem using
standard methods, as these hypotheses might not be necessary any more when
using ML/EC methods, opening wide news areas of alternative solutions. In any
case, they should not look for a nail for their genetic programming hammer.

Authors: We thank you for this interview!



Chapter 3
Methods of Linear Control Theory

Guaranteed Margins for LQG Regulators. Abstract—There are none.
John Doyle IEEE Transactions on Automatic Control, 1978 [86]

The most well-developed theory of control generally applies to a linear system or to
the linearization of a nonlinear system about a fixed point or a periodic orbit. Linear
control theory has many applications in fluid dynamics, such as the stabilization of
unstable laminar boundary layers. Although the governing equations may be non-
linear, successful stabilizing controllers will regulate the system to a neighborhood
where the linearization is increasingly valid.

In this chapter we introduce linear systems (Sect. 3.1) and explore H2 optimal
control problems, including the linear quadratic regulator (LQR) in Sect. 3.2 and the
Kalman filter in Sect. 3.3. These problems are chosen because of their simplicity,
ubiquitous application, well-defined quadratic cost-functions, and the existence of
known optimal solutions. Next, linear quadratic Gaussian (LQG) control is intro-
duced for sensor-based feedback in Sect. 3.4. Finally, methods of linear system iden-
tification are provided in Sect. 3.5.

This chapter is not meant to be an exhaustive primer on linear control theory,
although key concepts from optimal control are introduced as needed to build intu-
ition. Note that none of the linear system theory below is required to implement
the machine learning control strategies in the remainder of the book, but they are
instead included to provide context and demonstrate known optimal solutions to
linear control problems. In many situations, H∞ robust control may be more desir-
able to balance the trade-off between robustness and performance in systems with
uncertainty and unmodeled dynamics, and the MLC methods developed here may be
generalized to other cost functions. For a more complete discussion of linear control
theory, excellent books include [93, 252].

© Springer International Publishing Switzerland 2017
T. Duriez et al., Machine Learning Control – Taming Nonlinear
Dynamics and Turbulence, Fluid Mechanics and Its Applications 116,
DOI 10.1007/978-3-319-40624-4_3
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3.1 Linear Systems

Many systems of interest are either linear, or correspond to the linearization of a
nonlinear system, such as Eq. (1.1), about a fixed point or periodic orbit. The most
complete theory of control applies to linear systems. Consider the following state-
space system:

d

dt
a = Aa + Bb (3.1a)

s = Ca + Db. (3.1b)

The matrices A,B,C, and D arise from the linearization of Eq. (1.1) about an equi-
librium state a0; in Eq. (3.1), the state a is the deviation from the equilibrium a0. In
the absence of an actuation input b, the solution to Eq. (3.1a) is:

a(t) = eA(t−t0)a(t0), (3.2)

where the matrix exponential eAt is given by the infinite series:

eAt = I + At + 1

2!A
2t2 + 1

3!A
3t3 + · · · . (3.3)

The stability of this system is determined by the eigenvalues ofA, and eigenvalues
with positive real part are unstable. The corresponding eigenvectors represent unsta-
ble state directions, where perturbations will either grow without bound, or grow
until unmodeled nonlinear dynamics become important.

In the case of an actuation input b, the solution to Eq. (3.1a) becomes:

a(t) = eAta(0) +
∫ t

0
eA(t−τ)Bb(τ ) dτ. (3.4)

The system in Eq. (3.1a) is controllable if it is possible to navigate the system to
an arbitrary state a from the origin in finite time with a finite actuation signal b(t).
Mathematically, this relies on the controllability matrix

C = [
B AB A2B · · · ANa−1B

]
(3.5)

having full column rank. In practice, the degree of controllability, characterized
by the singular value decomposition of the controllability matrix in Eq. (3.5), or
equivalently, by the eigen-decomposition of the controllability Gramian, is often
more useful. Note that if Eq. (3.1a) is the linearization of a nonlinear system about a
fixed point, then it may be controllable with a nonlinear controller b = K(a), even
if Eq. (3.1a) is linearly uncontrollable. As long as all unstable state directions are in
the span of C , then the system is stabilizable; these unstable directions correspond
to eigenvectors of A with eigenvalues having positive real part.

http://dx.doi.org/10.1007/978-3-319-40624-4_1
http://dx.doi.org/10.1007/978-3-319-40624-4_1
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Similarly, the system in Eq. (3.1b) is observable if any state a may be estimated
from a time-history of sensor measurements s. Mathematically, this corresponds to
the observability matrix

O =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C
CA
CA2

...

CANa−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(3.6)

having full row rank. A system is detectable if all unstable states are observable, so
that they are in the row-space of O .

As in Eq. (1.1), the matrices in the linearization in Eq. (3.1) may depend on the
specific bifurcation parameters μ. The linear theory above may also be generalized
for linear parameter varying (LPV) systems, where the matrices in Eq. (3.1) depend on
a time-varying parameter [16, 247]. For example, when linearizing about a periodic
orbit, the matrices are parameterized by the phase φ of the trajectory on the orbit.
In this case, gain-scheduling allows different controllers to be applied depending on
the parameter values [233, 247].

3.2 Full-State Feedback

If measurements of the full state a are available, then D = 0 and C = I, where I
is the Na × Na identity matrix. We may then consider full-state feedback control
b = K(a) based on measurements of the state, s = a. Although full-state feedback
may be unrealistic, especially for high-dimensional systems, it is often possible to
estimate the full state from limited sensor measurements, using a Kalman filter,
as discussed in Sect. 3.3. Remarkably, it is possible to design an optimal full-state
feedback controller and an optimal state-estimator separately, and the combined
sensor-based feedback controller will also be optimal, as we will show in Sect. 3.4.

Linear Quadratic Regulator (LQR)

If the system in Eq. (3.1a) is controllable, then it is possible to design a proportional
controller

b = −Kra (3.7)

to arbitrarily place the eigenvalues of the closed-loop system

d

dt
a = Aa + Bb = (A − BKr ) a. (3.8)

http://dx.doi.org/10.1007/978-3-319-40624-4_1
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LQR

b = −Kra

System
d
dt a= Aa+Bb
s= a

b a

Fig. 3.1 LQR stabilization problem. The optimal control for a linear system with full-state feedback
s = a is given by proportional control b = −Kra where Kr is a gain matrix obtained by solving
an algebraic Riccati equation

A natural goal in control theory is to stabilize the system so that the state a converges
quickly to 0, but without expending too much control effort. We may construct a
quadratic cost function J that balances the aggressive regulation of a with the cost
of control:

J (t) =
∫ t

0

[
aT (τ )Q a(τ ) + bT (τ )Rb(τ )

]
dτ. (3.9)

The goal is to develop a control strategy b = −Kra to minimize J = limt→∞ J (t).
The matricesQ andR weight the cost of deviations of the state from zero and the cost
of actuation, respectively.R is positive definite andQ is positive semi-definite. These
matrices are often diagonal, and the diagonal elements may be tuned to change the
relative importance of the control objectives. For example, if we increase the entries
of Q by a factor of 10 and keep R the same, then accurate state regulation is more
heavily weighted, and more aggressive control may be permitted. Typically, the ratios
of elements in Q and R are increased or decreased by powers of 10.

Because of the well-defined quadratic cost function in Eq. (3.9), the optimal con-
trollerKr may be solved for analytically. In particular, the controllerK that minimizes
the cost in Eq. (3.9) is given by

Kr = R−1BTX, (3.10)

where X is the solution to the algebraic Riccati equation:

ATX + XA − XBR−1BTX + Q = 0. (3.11)

The resulting full-state feedback controller is called a linear quadratic regulator
(LQR), since it is a linear control law that minimizes a quadratic cost function to
regulate the system. This is shown schematically in Fig. 3.1. Solving for the LQR
controller Kr in Eq. (3.10) is computationally robust, and it is a built-in routine
in many computational packages. However, the computational cost of solving the
Riccati equation in Eq. (3.11) scales with the cube of the state dimension, making it
prohibitively expensive for large systems, except as an off-line calculation.
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3.3 Sensor-Based State Estimation

The optimal LQR controller above relies on access to the full state of the system.
However, in many applications full-state measurements of a high-dimensional sys-
tem are either technologically infeasible or prohibitively expensive to collect and
process. When full measurements are available, as with the use of particle image
velocimetry (PIV) [127, 278] to measure fluid velocity fields in experiments, these
measurements are typically only available in controlled experimental settings, and
are not practical for in-field applications such as monitoring flow over a wing in flight.
The computational burden of collecting, transferring and processing full-state mea-
surements may also limit the temporal resolution of the measurements and introduce
unacceptable time-delays which degrade robust performance.

In practice, it is often necessary to estimate the full state a from limited noisy
sensor measurements s. This process balances information from a model prediction
of the state with the sensor measurements. Under a set of well-defined conditions it
is possible to obtain a stable estimator that converges to an estimate of the full state
a, which can then be used in conjunction with the optimal full-state feedback LQR
control law described above.

Kalman Filtering

The Kalman filter [156] is perhaps the most often applied algorithm to estimate the
full-state of a system from noisy sensor measurements and an uncertain model of the
system. Kalman filters have been used in myriad applications, including guidance and
tracking of vehicles, airplane autopilots, modeling climate and weather, seismology,
and satellite navigation, to name only a few. An excellent and complete derivation
of the Kalman filter may be found in [255].

In the dynamic state-estimation framework, the linear dynamics from Eq. (3.1)
are generalized to include stochastic disturbances wd , also known as process noise,
and sensor noise wn:

d

dt
a = Aa + Bb + wd (3.12a)

s = Ca + Db + wn. (3.12b)

Both the disturbance and noise terms are assumed to be zero-mean Gaussian white-
noise processes, although generalizations exist to handle correlated and biased noise
terms. We assume that the disturbance and noise covariances are known:

E
(
wd(t)wd(τ )T

) = Vdδ(t − τ) (3.13a)

E
(
wn(t)wn(τ )T

) = Vnδ(t − τ) (3.13b)
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where E is the expectation operator, and δ(·) is the Dirac delta function. The
matrices Vd and Vn are diagonal matrices whose entries contain the variances of
the corresponding disturbance or noise term.

A full-state estimator is a dynamical system that produces an estimate â for the
full-state a using only knowledge of the noisy sensor measurements s, the actuation
inputb, and a model of the process dynamics. If the system is observable, it is possible
to construct an estimator with a filter gain K f as follows:

d

dt
â = Aâ + Bb + K f

(
s − ŝ

)
(3.14a)

ŝ = Câ + Db. (3.14b)

The output ŝ is a prediction of the expected sensor output based on the full-state
estimate â. Substituting the expression for ŝ from Eq. (3.14b) into Eq. (3.14a) yields
a dynamical system for â with b and s as inputs:

d

dt
â = (

A − K f C
)
â + K f s + (

B − K f D
)
b (3.15a)

= (
A − K f C

)
â + [

K f ,
(
B − K f D

)]
[
s
b

]

. (3.15b)

This is shown schematically in Fig. 3.2 for D = 0.
For observable systems in Eq. (3.1), it is possible to arbitrarily place the eigen-

values of the estimator dynamics A − K f C, resulting in stable convergence of the
estimate â to the true state a. To see that stable dynamics A − K f C result in a sta-
ble estimator that converges to the full-state a, consider the time dynamics of the
estimation error ε = a − â:

d

dt
ε = d

dt
a − d

dt
â

= [Aa + Bb + wd ] − [(
A − K f C

)
â + K f s + (

B − K f D
)
b
]

= Aε + wd + K f Câ − K f s + K f Db

= Aε + wd + K f Câ − K f [Ca + Db + wn]
︸ ︷︷ ︸

s

+K f Db

= (
A − K f C

)
ε + wd − K f wn.

Therefore, the estimate â will converge to the true state a as long as A − K f C is
stable. Analogous to the case of LQR, there is a balance between over-stabilization
and the amplification of noise. An analogy is often made with an inexperienced
automobile driver who holds the wheel too tightly and reacts to every bump and
disturbance on the road.
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System

d
dt a= Aa+Bb+wd

s= Ca+wn

wn

wd

b

a +

Estimator

d
dt â= (A−K fC)â

+K f s+Bb

E
J

s
â

−

B
b + + ∫ â

s +
K f

+

A

−

Cŝ

−

Fig. 3.2 Schematic of the Kalman filter for state estimation from noisy measurements s = Ca+wn
with process noise (disturbance) wd . Note that there is no feedthrough term D in this diagram

The Kalman filter is an optimal full-state estimator that minimizes the following
cost function:

J = lim
t→∞E

(
(a(t) − â(t))T (a(t) − â(t))

)
. (3.16)

Implicit in this cost function are the noise and disturbance covariances, which
determine the optimal balance between aggressive estimation and noise attenuation.
The mathematical derivation of an optimal solution is nearly identical to that of LQR,
and this problem is often called linear quadratic estimation (LQE) because of the
dual formulation. The optimal Kalman filter gain K f is given by

K f = YCTVn (3.17)

where Y is the solution to another algebraic Riccati equation:

YAT + AY − YCTV−1
n CY + Vd = 0. (3.18)
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3.4 Sensor-Based Feedback

In practice, the full-state estimate from sensor-based estimation is used in conjunction
with a full-state feedback control law, resulting in sensor-based feedback. The sep-
aration principle in control theory states that for linear systems it is possible to
design optimal full-state feedback and full-state estimator gain matrices separately,
and the resulting sensor-based feedback will remain optimal when combined. There
are numerous techniques to develop sensor-based control that optimize different
quantities. For instance, combining the LQR and Kalman filter solutions results in
what are known as H2 optimal control laws, while other controllers, known as H∞
controllers, may be designed to provide robustness.

In the case of model-free machine learning control, the controller dynamical
system, which estimates relevant states from sensors and feeds this state estimate
back into an actuation signal, must be designed and optimized as a single unit.
Realistically, we may not have access to full-state data to train an estimator, even
during an expensive off-line optimization. Moreover, the system under investigation
may be unstable, so that a sensor-based controller must first be applied before training
an estimator is even feasible. However, it will be possible to design sensor-based
feedback controllers in one shot with MLC using generalized transfer function blocks,
as will be explored in the following chapter.

Linear Quadratic Gaussian (LQG)

The linear quadratic Gaussian (LQG) controller is the optimal sensor-based feed-
back control law that minimizes the cost function in Eq. (3.9) using sensors s from
the linear model in Eq. (3.12) with sensor and process noise. Remarkably, the opti-
mal LQG solution is obtained by combining the optimal LQR feedback gain Kr

System

d
dt a= Aa+Bb+wd

s= Ca

wd

wn

b

LQE

K f

LQR

-Kr

s

â

LQG

Fig. 3.3 Schematic diagram for linear quadratic Gaussian (LQG) controller. The optimal LQR
and LQE gain matrices Kr and K f are designed separately based on the solutions of two different
algebraic Riccati equations. When combined, the resulting sensor-based feedback is optimal
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with the estimated state â obtained by the optimal Kalman filter K f , as shown in
Fig. 3.3. Thus, it is possible to design Kr and K f separately by solving the respective
Riccati equations in Eqs. (3.11) and (3.18) and then combine to form an optimal LQG
controller; this is known as the separation principle.

Combining the full-state LQR control in Eq. (3.8) with the full-state Kalman filter
estimate in Eq. (3.15), we obtain a dynamical system for the LQG controller where
s is the input to the controller, b is the output of the controller, and the internal
controller state is the full-state estimate â:

d

dt
â = (

A − K f C − BKr
)
â + K f s (3.19a)

b = −Kr â. (3.19b)

The LQG cost function is the ensemble-averaged value of Eq. (3.9),

J (t) =
〈∫ t

0

[
aT (τ ) Q a(τ ) + bT (τ )Rb(τ )

]
dτ

〉

, (3.20)

where the angular brackets denote the average over many noise realizations.
Applying LQR to the full-state estimate â results in the following state dynamics:

d

dt
a = Aa − BKr â + wd (3.21a)

= Aa − BKra + BKr
(
a − â

) + wd (3.21b)

= Aa − BKra + BKrε + wd , (3.21c)

where ε = a − â as before. We may finally write the closed-loop system as

d

dt

[
a
ε

]

=
[
A − BKr BKr

0 A − K f C

] [
a
ε

]

+
[
I 0
I −K f

] [
wd

wn

]

. (3.22)

It is clear that if Kr and K f were chosen to optimally place the closed-loop eigen-
values of A−BKr and A−K f C in the respective LQR and Kalman filter problems,
then these are still the eigenvalues of the sensor-based closed-loop LQG controller.

The LQG framework assumes an accurate system model and knowledge of the
measurement and process noise magnitude; moreover, the Gaussian in the title refers
to the assumption that these noise terms are Gaussian white noise processes. In prac-
tice, all of these assumptions are dubious for many real-world systems, and even
small amounts of model uncertainty can destroy the LQG performance and cause
instability [86]. The entire optimization process above is often referred to as H2

optimal control. The optimization problem may be modified to promote robust con-
trollers for systems that have model uncertainty [88, 89, 119], and these controllers
are often referred to as H∞ robust control laws. Intuitively, robust control penalizes
the worst-case performance of a system, so that robustness is promoted. Often, an



58 3 Methods of Linear Control Theory

LQG controller may be robustified through a process called loop transfer recovery,
although this is beyond the scope of this book. An excellent treatment of robust
control may be found in [93].

3.5 System Identification and Model Reduction

In many high-dimensional fluid problems, it is still possible to use linear control
techniques, despite nonlinear equations of motion. For example, in fluid dynamics
there are numerous success stories of linear model-based flow control, including
transition delay in a spatially developing boundary layer on a flat plate and in channel
flow [11–13, 29, 63, 101, 135, 136, 142, 245, 246], reducing skin-friction drag in wall
turbulence [71, 72, 102, 159, 160], and stabilization of the cavity flow [55–57, 144,
228, 230, 232, 234, 235]. However, many of the linear control approaches do not scale
well to large state spaces, and they may be prohibitively expensive to enact for real-
time control on short timescales. It is therefore often necessary to first develop low-
dimensional approximations of the full-state system for use with feedback control.
There are two broad approaches to this problem: First, it is possible to start with a
high-dimensional dynamical system, such as the discretized Navier-Stokes equations,
and project the dynamics onto a low-dimensional subspace identified, for example,
using proper orthogonal decomposition (POD) [28,138] and Galerkin projection.
This results in a reduced-order model (ROM) [24, 221]. There are many approaches
to this problem, including discrete empirical interpolation methods (DEIM) [60, 211],
gappy POD [100], balanced proper orthogonal decomposition (BPOD) [231, 277],
and many more. The second approach is to collect data from a simulation or an
experiment and try to identify a low-dimensional model using data-driven techniques.
This approach is typically called system identification, and is often preferred for
control design because of the relative ease of implementation. Examples include the
dynamic mode decomposition (DMD) [238, 270] and related Koopman analysis [187,
188, 229], the eigensystem realization algorithm (ERA) [151, 181], and the observer–
Kalman filter identification (OKID) [150, 152, 214].

After a linear model has been identified, either by model reduction or system
identification, it may then be used for model-based control design, as described above.
However, there are a number of issues that may arise in practice, as linear model-based
control might not work for a large class of problems. First, the system being modeled
may be strongly nonlinear, in which case the linear approximation might only capture
a small portion of the dynamic effects. Next, the system may be stochastically driven,
so that the linear model will average out the relevant fluctuations. Finally, when
control is applied to the full system, the attractor dynamics may change, rendering
the linearized model invalid. Exceptions include the stabilization of laminar solutions
in fluid mechanics, where feedback control rejects nonlinear disturbances and keeps
the system close to the fixed point where linearization is useful.
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There are certainly alternative methods for system identification and model
reduction that are nonlinear, involve stochasticity, and change with the attractor.
However, these methods are typically advanced and they also may limit the available
machinery from control theory.

3.5.1 System Identification

System identification may be thought of as a form of machine learning, where an
input–output map of a system is learned from training data in a representation that
generalizes to data that was not in the training set. There is a vast literature on methods
for system identification [150,174], which is beyond the scope of this treatment,
although many of the leading methods are based on a form of dynamic regression that
fits models based on data. For this section, we consider the eigensystem realization
algorithm (ERA) and observer-Kalman filter identification (OKID) methods because
of their connection to balanced model reduction [181, 192, 231, 270] and their recent
successful application in closed-loop flow control [11, 13, 143]. The ERA/OKID
procedure is also applicable to multiple-input, multiple-output (MIMO) systems.

3.5.2 Eigensystem Realization Algorithm (ERA)

The eigensystem realization algorithm produces low-dimensional linear input–output
models from sensor measurements of an impulse response experiment, and it is based
on the “minimal realization" theory of Ho and Kalman [133]. The modern theory
was developed to identify structural models for various spacecraft [151], and it has
been shown by Ma et al. [181] that ERA models are equivalent to BPOD models.1

ERA is based entirely on impulse response measurements and does not require prior
knowledge of a model.

Given a linear system, as in Eq. (3.1), it is possible to obtain a discrete-time
version:

ak+1 = Adak + Bdbk (3.23a)

sk = Cdak + Ddbk, (3.23b)

where subscript k denotes the time and Δt the corresponding timestep, so that ak =
a(tk) = a(kΔt). The matrices in the discrete-time system are denoted with a subscript
d and are related to the original continuous-time system matrices as:

1BPOD and ERA models both balance the empirical Gramians and approximate balanced trunca-
tion [192] for high-dimensional systems.
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Ad = exp(AΔt) (3.24a)

Bd =
∫ Δt

0
exp(Aτ)Bdτ (3.24b)

Cd = C (3.24c)

Dd = D. (3.24d)

Now, a discrete-time delta function input in the actuation b:

bδ
k � bδ(kΔt) =

{
I, k = 0
0, k = 1, 2, 3, · · · (3.25)

gives rise to a discrete-time impulse response in the sensors s:

sδk � sδ(kΔt) =
{

Dd , k = 0
CdAk−1

d Bd , k = 1, 2, 3, · · · .
(3.26)

In an experiment or simulation, typically Nb impulse responses are performed,
one for each of the Nb separate input channels. The output responses are collected
for each impulsive input, and at a given time-step k, the output vector in response
to the j th impulsive input will form the j th column of sδk . Thus, each of the sδk is a
Ns × Nb matrix.

A Hankel matrix H is formed by stacking shifted time-series of impulse-response
measurements into a matrix:

H =

⎡

⎢
⎢
⎢
⎣

sδ1 sδ2 · · · sδmc

sδ2 sδ3 · · · sδmc+1
...

...
. . .

...

sδmo
sδmo+1 · · · sδmc+mo−1

⎤

⎥
⎥
⎥
⎦

. (3.27)

This matrix is closely related to the empirical discrete-time observability and con-
trollability Gramians, Wd

O = Od
∗Od and Wd

C = CdCd
∗. Substituting the expression

from Eq. (3.26) into Eq. (3.27) yields:

H =

⎡

⎢
⎢
⎢
⎣

CdBd CdAdBd · · · CdA
mc−1
d Bd

CdAdBd CdA2
dBd · · · CdA

mc
d Bd

...
...

. . .
...

CdA
mo−1
d Bd CdA

mo
d Bd · · · CdA

mc+mo−2
d Bd

⎤

⎥
⎥
⎥
⎦

(3.28a)

=

⎡

⎢
⎢
⎢
⎣

Cd

CdAd
...

CdA
mo−1
d

⎤

⎥
⎥
⎥
⎦

[
Bd AdBd · · · Amc−1

d Bd

] = OdCd . (3.28b)
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Taking the singular value decomposition (SVD) of this Hankel matrix yields the
dominant temporal patterns in this time-series:

H = U�V∗ = [
Ur Us

]
[
�r 0
0 �s

] [
V∗

r
V∗

s

]

≈ Ur�rV∗
r . (3.29)

Notice that we may truncate all small singular values in �s and only keep the first r
singular values in �r . The columns of Ur and Vr may be thought of as eigen-time-
delay coordinates.

With sensor measurements from an impulse-response experiment, it is also pos-
sible to create a second, shifted Hankel matrix H′:

H′ =

⎡

⎢
⎢
⎢
⎣

sδ2 sδ3 · · · sδmc+1
sδ3 sδ4 · · · sδmc+2
...

...
. . .

...

sδmo+1 sδmo+2 · · · sδmc+mo

⎤

⎥
⎥
⎥
⎦

(3.30a)

=

⎡

⎢
⎢
⎢
⎣

CdAdBd CdA2
dBd · · · CdA

mc
d Bd

CdA2
dBd CdA3

dBd · · · CdA
mc+1
d Bd

...
...

. . .
...

CdA
mo
d Bd CdA

mo+1
d Bd · · · CdA

mc+mo−1
d Bd

⎤

⎥
⎥
⎥
⎦

= OdACd . (3.30b)

Based on the matrices H and H′, we are able to construct a reduced-order model
as follows:

Ar = �−1/2
r U∗

rH
′Vr�

−1/2
r ; (3.31a)

Br = first Nb columns of �1/2
r V∗; (3.31b)

Cr = first Ns columns of U�1/2
r . (3.31c)

Thus, we express the input–output dynamics in terms of a reduced system with a
low-dimensional state:

ãk+1 = Ar ãk + Brb (3.32a)

s = Cr ãk . (3.32b)

H andH′ are constructed from impulse response simulations/experiments, without
the need for storing direct or adjoint snapshots, as in other balanced model reduction
techniques. However, if full-state snapshots are available (for example, by collecting
velocity fields in simulations or PIV experiments), it is then possible to construct
direct modes. These full-state snapshots form C d , and modes can be constructed by:

Φr = C dVr�
−1/2
r . (3.33)
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These modes may then be used to approximate the full state of the high-dimensional
system from the low-dimensional model in Eq. (3.32) by:

a ≈ Φr ã. (3.34)

ERA balances the empirical controllability and observability Gramians, OdO
∗
d

and C ∗
d Cd . Unless we collect a very large amount of data, the true Gramians are

only approximately balanced. Instead of collecting long tails of data, it is possible
to collect data until the Hankel matrix is full rank, balance the full-rank identified
model, and then truncate. This is more efficient than collecting snapshots until all
transients have decayed; this idea is developed in [177, 269].

3.5.3 Observer Kalman Filter Identification (OKID)

OKID was developed to compliment the ERA for lightly damped experimental sys-
tems with noise [152]. In practice, performing isolated impulse response experiments
is challenging, and the effect of measurement noise can contaminate results. More-
over, if there is a large separation of timescales, then a tremendous amount of data
must be collected to use ERA. This section poses the general problem of approxi-
mating the impulse response from arbitrary input/output data. Typically, one would
identify reduced-order models according to the following general procedure, shown
in Fig. 3.4:

1. Collect the output response to a pseudo-random input.
2. This information is passed through the OKID algorithm to obtain the de-noised

linear impulse response.
3. The impulse response is passed through the ERA to obtain a reduced-order state-

space system.

The output sk in response to a general input signal bk , for zero initial condition
x0 = 0, is given by:

s0 = Ddb0 (3.35a)

s1 = CdBdb0 + Ddb1 (3.35b)

s2 = CdAdBdb0 + CdBdb1 + Ddb2 (3.35c)

· · ·
sk = CdAk−1

d Bdb0 + CdAk−2
d Bdb1 + · · · + CdBdbk−1 + Ddbk . (3.35d)

Note that there is noC term in the expression for s0 since there is zero initial condition
x0 = 0. This progression of measurements sk may be further simplified and expressed
in terms of impulse-response measurements sδk :
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Fig. 3.4 Schematic illustrating the use of OKID followed by ERA to identify a low-dimensional
state-space model, based on measurement data. The schematic illustrates the single-input single-
output (SISO) case, although both methods are general and handle multiple-input multiple-output
(MIMO) systems

[
s0 s1 · · · sN

]

︸ ︷︷ ︸
S

= [
sδ0 sδ1 · · · sδN

]

︸ ︷︷ ︸
S δ

⎡

⎢
⎢
⎢
⎣

b0 b1 · · · bN

0 b0 · · · bN−1
...

...
. . .

...

0 0 · · · b0

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
B

. (3.36)

It is often possible to invert the matrix of control inputs, B, to solve for the
Markov parameters S δ . However, B may be sparsely populated, so that either it is
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un-invertible, or inversion is ill-conditioned. In addition,B is large for lightly damped
systems, making inversion computationally expensive. Finally, noise is not optimally
filtered by simply inverting B to solve for the Markov parameters.

The OKID method addresses each of these issues. Instead of the original discrete-
time system, we now introduce an optimal observer system:

âk+1 = Ad âk + K f
(
ŝk − sk

) + Bdbk (3.37a)

ŝk = Cd âk + Ddbk, (3.37b)

which may be re-written as:

âk+1 = (Ad + K f Cd)
︸ ︷︷ ︸

Ād

âk + [
Bd + K f Dd ,−K f

]

︸ ︷︷ ︸
B̄d

[
bk

sk

]

. (3.38)

Recall from above that if the system is observable, it is possible to place the poles
of Ad + K f Cd anywhere we like. However, depending on the amount of noise in
the measurements and structural disturbance in our model, there are optimal pole
locations that are given by the Kalman filter (recall Sect. 3.3). We may now solve for

the observer Markov parameters S̄
δ

of this system in terms of measured inputs and
outputs according to the following algorithm from [152]:

1. Choose the number of observer Markov parameters to identify, p.
2. Construct the data matrices below:

S = [
s0 s1 · · · sp · · · sM

]
(3.39)

C =

⎡

⎢
⎢
⎢
⎣

b0 b1 · · · bp · · · bM

0 v0 · · · vp−1 · · · vM−1
...

...
. . .

...
. . .

...

0 0 · · · v0 · · · vM−p

⎤

⎥
⎥
⎥
⎦

(3.40)

where vi = [
bT

i sT
i

]T
.

The matrixC resemblesB, except that is has been augmented with the outputs si .
In this way, we are working with a system that is augmented to include a Kalman
filter. We are now identifying the observer Markov parameters of the augmented

system, S̄
δ
, using the equation S = S̄

δ
C .

3. Identify the matrix S̄
δ

of observer Markov parameters by solving S = S̄
δ
C

for S̄
δ

using the right pseudo-inverse of C (i.e., SVD).
4. Recover system Markov parameters, S δ , from the observer Markov parameters,

S̄
δ
.
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(a) Order the observer Markov parameters S̄
δ

as:

S̄
δ

0 = D, (3.41)

S̄
δ

k =
[
(S̄

δ
)
(1)
k (S̄

δ
)
(2)
k

]
for k ≥ 1, (3.42)

where (S̄
δ
)
(1)
k ∈ R

q×p, (S̄
δ
)
(2)
k ∈ R

q×q , and sδ0 = S̄
δ

0 = D.
(b) Reconstruct system Markov parameters:

sδk = (S̄
δ
)
(1)
k +

k∑

i=1

(S̄
δ
)
(2)
i sδk−i for k ≥ 1. (3.43)

Thus, the OKID method identifies the Markov parameters of a system augmented
with an asymptotically stable Kalman filter. The system Markov parameters are
extracted from the observer Markov parameters by Eq. (3.43). These system Markov
parameters approximate the impulse response of the system, and may be used directly
as inputs to the ERA algorithm.

There are numerous extensions of the ERA/OKID methods. For example, there
are generalizations for linear parameter varying (LPV) systems and systems lin-
earized about a limit cycle. We will implement the ERA/OKID method in Sect. 6.4
on a turbulent mixing layer experiment. This example will demonstrate the limited
usefulness of linear system identification for strongly nonlinear systems.

3.6 Exercises

Exercise 3–1: Show that the following system is controllable but not observable:

d

dt

[
a1

a2

]

=
[−1 1

0 −2

] [
a1

a2

]

+
[

0
1

]

b (3.44a)

s = [
0 1

]
[

a1

a2

]

. (3.44b)

How might we change the matrix C = [
0 1

]
to make the system observable?

Exercise 3–2: Develop an optimal LQR controller for the following system:

d

dt

[
a1

a2

]

=
[−1 1

0 1

] [
a1

a2

]

+
[

0
1

]

b. (3.45)

(a) In particular, solve for the gain matrix Kr so that b = −Kra minimizes the
cost function:

http://dx.doi.org/10.1007/978-3-319-40624-4_6
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J =
∫ ∞

0

[
aT (τ ) Q a(τ ) + R b2(τ )

]
dτ, Q =

[
1 0
0 1

]

, R = 1. (3.46)

(b) Now show that nearby controllers with controller gain 1.1Kr and .9Kr are
suboptimal.

(c) Finally, solve for the optimal Kr using a genetic algorithm. You will likely
need to approximate the cost function J by integrating to a finite but long time
until transients decay.

Exercise 3–3: Develop a Kalman filter for the following system:

d

dt

[
a1

a2

]

=
[−.01 1

−1 −.01

] [
a1

a2

]

+
[

0
1

]

b +
[

1 0
0 1

] [
wd1

wd2

]

(3.47a)

s = [
1 0

]
[

a1

a2

]

+ wn. (3.47b)

(a) Simulate the system with measurement and process noise with forcing b =
sin(t) and plot the Kalman filter prediction of the state. You can compare this
to the full-state of the true system by using the same A and B matrices above
but using C = I to output the full state a.

(b) Now, using the same Kalman filter above, increase the process noise (distur-
bance) by a factor of 5. How does this change the full-state prediction?

(c) For a range of process and measurement noise magnitudes, compute the
Kalman filter. How do the eigenvalues of the full-state estimator change with
the various noise magnitudes? Is there a relationship?

Exercise 3–4: Consider the following system

d

dt

[
a1

a2

]

=
[−2 1

0 1

] [
a1

a2

]

+
[

0
1

]

b (3.48a)

s = [
1 0

]
[

a1

a2

]

. (3.48b)

(a) Compute an LQR controller for the matrix pair A and B.
(b) Compute a Kalman filter for the matrix pair A and C.
(c) Now, compute the closed-loop system in Matlab® by implementing LQG con-

trol. Show that the closed-loop eigenvalues are the same as the LQR and
Kalman filter eigenvalues from above.

Exercise 3–5: Consider the following linear system:

d

dt

[
a1

a2

]

=
[−1.0 0.001

0 −0.99

] [
a1

a2

]

+
[

0
1

]

b (3.49a)

s = [
1 0

]
[

a1

a2

]

. (3.49b)
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(a) Construct a time-series of impulse-response data from this system using a
sufficiently small Δt to resolve the dynamics.

(b) How many terms of the time series are required before the rank of the Hankel
matrix in Eq. (3.27) saturates? Why is this true?

(c) Use the eigensystem realization algorithm to determine a model from the time-
series.

(d) Now, add a small amount of measurement noise to the time-series. How many
terms are required to capture the system dynamics now? How does this number
change as the noise magnitude is increased?

3.7 Suggested Reading

Texts

(1) Feedback Systems: An Introduction for Scientists and Engineers, by
K.J. Aström and R.M. Murray, 2010 [223].
This is an excellent introductory text that provides a number of motivating exam-
ples. The control problem is formulated in state-space, which is beneficial for
students with a strong mathematical background.

(2) FeedbackControl Theory, by J.C. Doyle, B.A. Francis, and A.R. Tannenbaum,
2013 [87].
This text strikes a delicate balance between simple introductory concepts and
advanced topics in robust control. The authors largely defined this field, and this
book is essential reading.

(3) Multivariable Feedback Control: Analysis and Design, by S. Skogestad and
I. Postlethwaite, 2005 [252].
This is perhaps the most complete and practically useful guide for real-world
engineering control. It strikes a delicate balance between historical, theoretical,
and practical advice for the advanced control practitioner.

(4) A Course in Robust Control Theory: A Convex Approach, by G.E. Dullerud
and F. Paganini, 2000 [93].
This text provides an excellent treatment of the mathematical foundations of
linear control theory. There is a considerable focus on computational aspects,
including the use of methods from convex optimization.

(5) Optimal Control and Estimation, by R.F. Stengel, 2012 [255].
This book provides a comprehensive overview and derivation of optimal control,
including advanced methods such as neighboring optimal control. This text cov-
ers estimation and forecasting with a subtle balance between dynamical systems
and probability.
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Seminal Papers

(1) Guaranteed margins for LQG regulators, by J.C. Doyle, IEEE Transactions
on Automatic Control, 1978 [86].
This paper turned the world of control upside down. With a simple counterex-
ample, Doyle showed the possible lack of robustness of LQG regulators.

(2) Principal component analysis in linear systems: Controllability,
observability, and model reduction, by B.C. Moore, IEEE Transactions on
Automatic Control, 1981 [192].
This paper connects dimensionality reduction with controllability and observ-
ability, paving the way towards modern techniques in model reduction.

(3) Identification of linear parameter varying models, by B. Bamieh and
L. Giarré, International Journal of Robust and Nonlinear Control, 2002 [16].
This paper describes how to identify a parameterized family of locally linear
models that may be used for gain-scheduled control.



Chapter 4
Benchmarking MLC Against Linear Control

All stable processes we shall predict. All unstable processes we
shall control.

John von Neumann

We have now developed two powerful approaches to design control laws: the
machine learning control (MLC) approach from Chap. 2, and the classical
optimal linear control theory from Chap. 3. Both approaches have benefits and trade-
offs. Linear control theory yields concise control laws that are solutions to opti-
mization problems, providing the best possible control laws for linear systems that
are well characterized by accurate input–output models. In fact, we may view the
MLC approach as an alternative optimization procedure to determine these clas-
sical controllers that generalizes naturally to nonlinear problems in a model-free
context.

In this chapter, we demonstrate the use of genetic programming for MLC on linear
systems where optimal control laws are known. In particular, we benchmark MLC
against the linear quadratic regulator (LQR) for full-state feedback in Sect. 4.1, the
Kalman filter for noisy state estimation in Sect. 4.2, and linear quadratic Gaussian
(LQG) for optimal sensor-based feedback in Sect. 4.3. As an example system, we
consider an unstable linear oscillator, which mimics many instabilities that occur in
fluid dynamics. Next, we compare MLC with linear optimal control on systems with
increasing nonlinearity in Sect. 4.4. Exercises are provided in Sect. 4.5. We conclude
the chapter in Sect. 4.6 with an interview of Professor Shervin Bagheri who is a
pioneer and a leading scholar in model-based closed-loop flow control.

© Springer International Publishing Switzerland 2017
T. Duriez et al., Machine Learning Control – Taming Nonlinear
Dynamics and Turbulence, Fluid Mechanics and Its Applications 116,
DOI 10.1007/978-3-319-40624-4_4
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4.1 Comparison of MLC with LQR on a Linear Oscillator

As discussed in Chap. 3, control design often begins with the implementation of a
full-state feedback regulator. The assumption of full-state measurements will later
be relaxed, necessitating dynamic estimation from limited sensor measurements.

Machine learning control using genetic programming provides an approach to
optimize controller design given a well-posed cost function. Thus, it is possible to
test the ability of MLC to discover the known optimal linear quadratic regulator
(LQR) solution from Sect. 3.2. In particular, we consider an unstable linear oscillator
with two states:

d

dt
a1 = σa1 − ωa2 (4.1a)

d

dt
a2 = ωa1 + σa2 + b. (4.1b)

We assume full-state measurements, s = a, although we will relax this assumption
in the following sections. In the state space form of Eq. (3.1), this system is given by
the following system matrices:

A =
[
σ −ω

ω σ

]

, B =
[

0
1

]

, (4.2a)

C =
[

1 0
0 1

]

, D =
[

0
0

]

. (4.2b)

For this example σ = ω = 1, corresponding to an unstable linear growth rate.
The following LQR cost function weights are used:

Q =
[

1 0
0 1

]

, R = 1. (4.3)

The LQR optimal controller from Eq. (3.10) is given by b = −Kra with

Kr = [−4.8783 4.4288
]
. (4.4)

The cost is monitored as a function of time, as in Chap. 2:

J(t) =
∫ t

0

[
aT (τ ) Q a(τ ) + R b2(τ )

]
dτ. (4.5)

If time is omitted as an argument, the converged value lim
t→∞ J(t) is used.

The Matlab® implementation is shown in Code 4.1, and the closed-loop LQR
response is shown in Fig. 4.1 (solid curves). Notice that there are two large peri-
ods of growth in the cost function J corresponding to large magnitude of control

http://dx.doi.org/10.1007/978-3-319-40624-4_3
http://dx.doi.org/10.1007/978-3-319-40624-4_3
http://dx.doi.org/10.1007/978-3-319-40624-4_3
http://dx.doi.org/10.1007/978-3-319-40624-4_3
http://dx.doi.org/10.1007/978-3-319-40624-4_2
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Fig. 4.1 Response of the unstable oscillator system in Eq. (4.2) with LQR control (solid lines). The
MLC response is also shown (dashed red lines), and it agrees with the LQR controller. (a) The state
initially grows and is eventually stabilized. (b) The actuation signal b is aggressive at the beginning
until the system is driven closer to the origin. (c) The cost J (4.5) initially rises because of a large
actuation expenditure b, and then continues to rise until the state decays

Table 4.1 Main parameters used for MLC solution of LQR problem

Parameter Ni Ns Nb Pr Pm Pc Np Ne Node functions

Value 1000 2 1 0.1 0.4 0.5 7 10 +,−,×

expenditure. Eventually, the cost function converges to a final value after the state
has been stabilized and the actuation input shrinks to zero.

An MLC controller is constructed using genetic programming with simple oper-
ations (+,−,×) and the same cost function as in Eq. (4.5). The optimal controller is
simply a proportional feedback on the state measurements a, so this presents a sim-
ple test case for the MLC architecture. The MLC controller is also shown in Fig. 4.1
(dashed curves), and the response is extremely close to that of the LQR controller.

The MLC implementation is given below with the parameters of Table 4.1.
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Code 4.1 LQR implementation in Matlab®

The following code initializes the MLC problem, runs 50 generations, and displays
the results.

The evaluation function can be displayed by using the command:

As in Sect. 2.3.2, the evaluation function implements a dynamical system by repre-
senting the time derivatives as functions of the states and the control law representing
the individual. Then ode45 is used to integrate the dynamical system and the cost
function value is computed and returned. In case the numerical integration diverges,
a predefined high value is returned for J .

Although MLC achieves near-optimal performance in the LQR problem, we had
the advantage of full state measurements. To explore the case with limited mea-

http://dx.doi.org/10.1007/978-3-319-40624-4_2
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surements, we must explore an extension of MLC that includes temporal filters as
function blocks to estimate the full state from a time-history of sensor measurements.

4.2 Comparison of MLC with Kalman Filter on a Noisy
Linear Oscillator

In practice, full-state measurements of the system are often unavailable or may be
prohibitively expensive to collect and process in real-time. Instead, it is typically
necessary to collect limited sensor measurements and reconstruct the relevant state
through dynamic estimation, for example using the Kalman filter from Sect. 3.3.

In a high-dimensional fluid, even reconstructing the state through estimation may
be computationally expensive, introducing unacceptable time delays in the control
loop. Instead reduced-order models are generally used to describe the few states that
are most controllable and observable. A more challenging test of MLC involves full-
state estimation from limited noisy sensor measurements. As an illustrative example,
consider a neutrally stable oscillator with no forcing:

d

dt
a1 = σa1 − ωa2 + wd,1 (4.6a)

d

dt
a2 = ωa1 + σa2 + wd,2 (4.6b)

s = a1 + wn. (4.6c)

Again, this corresponds to a linear system with the following system matrices

A =
[
σ −ω

ω σ

]

, B =
[

0
0

]

, (4.7a)

C = [
1 0

]
, D = [

0
]
. (4.7b)

In this example, we will consider σ = 0 and ω = 1, corresponding to a neutrally
stable oscillator. Finally, the disturbance and noise covariance are given by:

Vd =
[

1 0
0 1

]

, Vn = 0.1. (4.8)

The cost function quantifies the accuracy of the estimation, as in Eq. (3.16).
The Matlab® implementation is shown in Code 4.2, and the full-state Kalman

filter estimate is shown in Fig. 4.2. The noisy sensor measurement s is shown in the
middle panel for a single noise realization. An ensemble of square-summed errors
are shown in the bottom panel, and the ensemble average is the cost function J , as in
Eq. (3.16). Because there is constantly error introduced through noisy measurements,
the cost function continues to increase for all time.

To compare the MLC solution, it is necessary to first generalize the function
tree representation beyond a static input–output map. In particular, we envision two

http://dx.doi.org/10.1007/978-3-319-40624-4_3
http://dx.doi.org/10.1007/978-3-319-40624-4_3
http://dx.doi.org/10.1007/978-3-319-40624-4_3
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methods of generalizing a function tree to achieve dynamic estimation: First, it is
possible to have nodes that accumulate information by integration (see Fig. 4.3), and
second, it is possible to have function expressions for the numerator and denominator
of a transfer function (see Fig. 4.4).

Code 4.2 LQE implementation in Matlab®
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Fig. 4.2 Dynamic full-state estimation of the neutrally stable oscillator system in Eq. (4.6) with a
Kalman filter (i.e., LQE). The cost J (3.16) rises because disturbances and noise constantly introduce
discrepancies between the estimate â and the true state a. An ensemble average cost function is
shown in black, and the individual cost functions for fifty instances are shown in gray

Table 4.2 Main parameters used for MLC solution of LQE problem. Nb = 4 indicates that 4
subtrees are generated for each individual

Parameter Ni Ns Nb Pr Pm Pc Np Ne Node functions

Value 1000 1 4 0.1 0.4 0.5 7 10 +,−,×

The performance of MLC for state estimation is shown in Fig. 4.5 for the same
conditions as used in Fig. 4.2. The state is estimated despite large disturbances and
sensor noise. MLC results in a sum-square error that is about twice as large as the
optimal Kalman filter solution.

The MLC implementation is given below with the parameters of Table 4.2.
The following code initializes MLC, runs 50 generations, and displays the results.

http://dx.doi.org/10.1007/978-3-319-40624-4_3
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Fig. 4.3 Illustration of a generalized genetic programming transfer function operator in the fre-
quency domain with Laplace variable ζ and filter frequency k. The discrete-time and continuous-
time implementations are also shown

s

Numerator

Denominator

÷ −1
â

Filter

Fig. 4.4 General filter block used in genetic programming for MLC. The inputs s are Laplace
transformed, and a transfer function is constructed in the frequency domain. This transfer function
is achieved by allowing GP to select numerator and denominator polynomials, which are then
divided. The output signal is inverse Laplace transformed to bring it back to the time domain

Each filter is the quotient of two polynomials in frequency domain, requiring
one tree for the numerator and one tree for the denominator, as in Fig. 4.4. In this
example, two filters are identified for each of a1 and a2, resulting in 4 polynomials. All
individuals are initialized to contain 4 subtrees, and can be written as the following
LISP string:

(root (poly1) (poly2) (poly3) (poly4))

where each ‘polyi’ is a LISP polynomial such as ‘(× S0 (+S0 2.23))’, where S0
represents the argument. In order to only obtain polynomials, +, −, and × are the
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Fig. 4.5 Dynamic full-state estimation of the neutrally stable oscillator system in Eq. (4.6) using
genetic programming for MLC. The cost J (3.16) continually rises because disturbances and noise
constantly introduce discrepancies between the estimate â and the true state a. An ensemble average
cost function is shown in black, and the individual cost functions for fifty random instances are shown
in gray

only operations allowed. The first two subtrees define the denominator and numerator
of the first filter. The latter two subtrees describe the same quantities for the second
filter.

The evaluation function can be displayed by using the command:

The evaluation function is set up in a Simulink® model with the parameters
(initial conditions, noise level etc.) and the polynomials for the transfer functions.
The frequency-domain filters need the denominator to be of higher order than the
numerator. This is why a pre-evaluation function is called at individual initialization,
so that proper transfer functions are enforced. The Simulink® implementation of
MLC is shown in Figs. 4.6 and 4.7.

http://dx.doi.org/10.1007/978-3-319-40624-4_3
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Fig. 4.6 Simulink® model to implement MLC for state estimation based on limited noisy mea-
surements. Individual blocks are shown in Fig. 4.7
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Fig. 4.7 Simulink® blocks for model in Fig. 4.6. This implements MLC for state estimation based
on limited noisy measurements
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Time-Delay Coordinates Through Spatial Measurements of Convective Flow

Interestingly, it has been shown in convective flow experiments that a finite but large
set of spatial sensors have resulted in effective closed-loop control performance,
even without dynamic estimation. It is likely that a rake of hot wires is effectively
establishing time-delay coordinates, which may be acting as a proxy for a dynamic
state estimation. This is a vibrant area of research, with many promising connections
to dynamical systems via the Koopman operator [41, 47, 162, 163, 170, 187, 188],
although this is beyond the scope of this book.

4.3 Comparison of MLC with LQG for Sensor-Based
Feedback

In model-based control design, it is possible to separately design an optimal regulator
using LQR and an optimal Kalman filter, and then combine the two to obtain an
optimal sensor-based LQG regulator. In practice, we may not have a model of the
dynamics, and if the dynamics are unstable it is difficult to run experiments to collect
data for system identification of a model. In this section, we demonstrate the ability
of MLC to generate a sensor-based stabilizing feedback controller for an unstable
system.

Again we consider the unstable system

d

dt
a1 = σa1 − ωa2 + wd,1 (4.9a)

d

dt
a2 = ωa1 + σa2 + b + wd,2, (4.9b)

and we assume that the sensor only measures the first component:

s = a1 + wn. (4.10)

This corresponds to a linear system with the following system matrices

A =
[
σ −ω

ω σ

]

, B =
[

0
1

]

, (4.11a)

C = [
1 0

]
, D = [

0
]
. (4.11b)

In this example we choose σ = ω = 1, corresponding to an unstable oscillator. The
ensemble-averaged cost function from Eq. (3.20) is used.

The result of classic linear-quadratic-Gaussian (LQG) control is shown in Fig. 4.8.
Note that the state a is rapidly stabilized despite a single noisy measurement s.

http://dx.doi.org/10.1007/978-3-319-40624-4_3
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Fig. 4.8 Sensor-based feedback for the unstable oscillator system in Eq. (4.9) using LQG control.
The cost J (3.20) continually rises because disturbances and noise constantly push the system away
from equilibrium. An ensemble average cost function is shown in black, and the individual cost
functions for fifty random instances are shown in gray

However, because of continual noise and disturbances, the state has small fluctuations
about zero for all time. These fluctuations contribute to a slowly increasing cost. The
most significant increase in cost J is experienced from t = 0 to t = 5, where the state
is large and there is significant control expenditure required to stabilize the system.
The LQG controller represents the optimal sensor-based feedback regulator given a
model of the system and of the noise and disturbance covariances.

Figure 4.9 shows the performance of the machine learning control approach on the
same unstable system (parameters in Table 4.3). In this example, there is no model
of the system dynamics or of the noise and disturbance covariances. Instead, candi-
date sensor-based control schemes are formulated, tested, evaluated, and evolved to
converge on a stabilizing controller. This represents a more challenging and general
approach to control design. It is seen that this control also stabilizes the system,
although the performance is not optimal as in the LQG case. However, this is rea-
sonable, since MLC is not based on a model, but instead relies on trial-and-error

http://dx.doi.org/10.1007/978-3-319-40624-4_3
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Fig. 4.9 Sensor-based feedback for the unstable oscillator system in Eq. (4.9) using MLC. Para-
meters and plotted quantities are the same as in Fig. 4.8

Table 4.3 Main parameters used for MLC solution of LQG problem

Parameter Ni Ns Nb Pr Pm Pc Np Ne Node functions

Value 1000 2 5 0.1 0.4 0.5 7 10 +,−,×

to stabilize the system. Moreover, since the system is unstable originally, it is quite
challenging to find stabilizing control expressions. With more optimization and gen-
erations, it is likely that MLC will converge to a solution where less noise propagates
through the control and into the state, resulting in a lower cost function.

The following code initializes the MLC problem, runs 50 generations, and displays
the results.
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Fig. 4.10 Schematic illustrating the use of filter blocks in genetic programming for MLC on LQG
problem. Each filter block is constructed as in Fig. 4.4

In the MLC case, two filters are constructed to estimate the two states a1 and
a2 from a single noisy sensor (Fig. 4.10). Each filter is composed in the frequency
domain as the ratio of a numerator and denominator polynomial, as in Fig. 4.4. Thus,
each filter is represented by two expression trees. The controller gain matrix Kr is
also represented as an expression tree, resulting in five trees overall. This can be
written as the following LISP string:

(root (poly1) (poly2) (poly3) (poly4) (poly5)),

where each ‘polyi’ is a LISP polynomial such as ‘(× S0 (+S1 2.23))’. In order to
only obtain polynomials, +, −, and × are the only operations allowed. For the first
four subtrees, all sensors (S0 or S1) are interpreted as the same variable so that they
can be used in polynomials as in the LQE implementation. The fifth subtree uses the
two estimated states as its sensor input.

The evaluation function can be displayed by using the command:

The evaluation function is set up in a Simulink® model with the parameters (initial
conditions, noise level etc.), the polynomials for the Laplace space filters and finally
the control law in the controller box. As the Laplace space filters need the denominator
to be of higher order than the numerator, for both filters, 75 % of the individuals
randomly generated this way cannot describe correctly such a filter. This is why a
pre-evaluation function is called at the individual creation, so that only the individuals
that meet the requirement that both denominator polynomials are of higher order than
their respective numerator are kept.
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4.4 Modifications for Small Nonlinearity

Often, linear control can be applied to nonlinear systems. Here, we compare the
performance of MLC and LQR when nonlinear terms are added to a linear system:

d

dt
a = Aa + ε F(a) + Bb. (4.12)

In this case, the variable ε modulates the strength of the nonlinearity, with ε = 0
corresponding to the linear system in Eq. (3.1). As an example, consider the Hopf
system, which adds a cubic nonlinearity to the linear oscillator in Eq. (4.2):

d

dt
a1 = σa1 − ωa2 − εa1(a

2
1 + a2

2) (4.13a)

d

dt
a2 = ωa1 + σa2 − εa2(a

2
1 + a2

2) + b. (4.13b)

For unstable linear dynamics with σ > 0, this system has a stable limit cycle with

radius r =
√

a2
1 + a2

2 = √
σ/ε. The smaller ε is, the larger the limit cycle radius, and

the larger the domain where the linear model is valid. As ε approaches zero, then the
limit cycle radius increases to infinity, and the linear system is recovered (Fig. 4.11).

Again, we assume full-state feedback, so that s = a, and we use the same linear
dynamics σ = ω = 1, the same LQR controller b = −Kra, and the same LQR cost
function weights Q and R from Sect. 4.1.

Figure 4.12 shows the LQR controller response for increasing nonlinearity ε. The
system is stabilized for all values, and as ε increases, the nonlinear dynamics actually
help the controller, so that the overall cost J decreases. Figure 4.13 shows the LQR
performance when ε is negative. In this case, the increasing nonlinearity makes the
system more difficult to control, and after a point the LQR controller fails to stabilize
the system; these parameter values are marked as diverging solutions.

Fig. 4.11 Vector field and trajectories attracting onto limit cycle for the Hopf normal form in
Eq. (4.13) with various values of ε

http://dx.doi.org/10.1007/978-3-319-40624-4_3
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ε. The initial condition for each case is a1 = a2 = √
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and the solid black line shows the corresponding LQR cost

Figures 4.14 and 4.15 show the machine learning control performance on the same
system. In the case of positive ε, the performance is quite similar to the LQR solution,
whereas in the case of negative ε, MLC performs with lower cost and over a larger
range of ε corresponding to stronger nonlinearities.

4.5 Exercises

Exercise 4-1: Consider the same linear system from Exercise 3-1:

d

dt

[
a1

a2

]

=
[−1 1

0 1

] [
a1

a2

]

+
[

0
1

]

b. (4.14)

(a) Now, use genetic programming to solve for the optimal controller b = K(s)
assuming full state measurements s = a. This controller should minimize the
LQR cost function:

J =
∫ ∞

0

[
aT (τ ) Q a(τ ) + R b2(τ )

]
dτ, Q =

[
1 0
0 1

]

, R = 1. (4.15)
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(b) Check your MLC expression and compare with the optimal LQR solution.
Implement a refinement to select genetic programming expressions with good
performance but also with the added constraint of a simple expression. This
may be added as a penalty in the cost function, or you may alternatively plot
a Pareto front of complexity vs performance for numerous candidate high-
performance controllers from the generations.

Exercise 4–2: Consider the neutrally stable system:

d

dt

[
a1

a2

]

=
[

0 1
−1 0

] [
a1

a2

]

+ Bb +
[

1 0
0 1

] [
wd1

wd2

]

. (4.16a)

s = C
[

a1

a2

]

+ wn. (4.16b)

(a) For the case with no actuation, B = 0, and a measurement of the first state
C = [

1 0
]
, develop a genetic programming expression to estimate the state

from noisy measurements using full-state training data. Construct an expres-
sion to estimate the state with and without the use of filter blocks as discussed
in this chapter. How does the static function perform in the presence of noise?
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Fig. 4.16 LQG reference tracking schematic for Exercise 4–3

(b) Now consider the case with actuation B = [
0 1

]T
, and develop a GP expres-

sion to estimate the state with forcing. Use the same cost function as in the
formulation of a Kalman filter.

(c) Finally, develop an optimal sensor based feedback control law using genetic
programming for MLC that optimizes the LQR cost function.

Exercise 4–3: In many cases, it is desirable to track a reference trajectory with
feedback control, as opposed to stabilizing a fixed point. For instance, we may
implement a control law to design and track a limit cycle.
With a working LQG controller, it is possible to command reference trajectories, as
depicted schematically in Fig. 4.16. In the general case, it is necessary to translate
the reference sensor signal sr into a reference actuation b∗ and reference state a∗
according to the following formula:

[
0
sr

]

=
[
A B
C D

] [
a∗
b∗

]

=⇒
[
a∗
b∗

]

=
[
A B
C D

]† [
0
sr

]

, (4.17)

where the superscript ‘†’ denotes the Moore-Penrose pseudo inverse. In the case
of full-state measurements, so that s = a, then ar = a∗, so that Ma = I and

b∗ = B†Aar . (4.18)

Thus, Mb = B†A.
Use MLC to design a controller to force a stable linear system into a limit cycle

behavior shown in Fig. 4.17. Implement the controller with actuation B =
[

1 0
0 1

]

.

Compare with the full-state LQR controller response in Fig. 4.17.
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Fig. 4.17 LQR stabilization of a limit cycle with full control authority in Exercise 4–3

4.6 Interview with Professor Shervin Bagheri

Shervin Bagheri is Associate Professor in fluid mechanics at the Royal Institute of
Technology (KTH) and the Linné Flow Centre. He has pioneered model-based closed-
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loop control with numerical and experimental demonstrations. He is a co-inventor
of DMD modes, also known as Koopman modes, one of most used ingredients of
reduced-order models. In his research, he focuses on the mathematical foundations
and physical principles that enable manipulation of fluid flows. These efforts include
both passive and active means to decrease drag, to increase mixing and to enhance
lift on bodies. His work was published in the leading fori of our field including Nature
Communications, the Philosophical Transactions of the Royal Society London A and
Physical Review Letters.

Authors: You are a leader in the field of model-based flow control with landmark
contributions to linear control design. What are some of the major trends that you
have observed in flow control over the past decade?

Prof. Bagheri: It was only 15 years ago that a systems theoretical approach (such
as input-output analysis, state-space systems, controllability, observability etc.)
to analyze and control shear flows became an active field on its own. Since then,
we have had a decade of proof-of-concept work, focusing on accommodating and
testing many of the powerful systems theoretical tools on fluid flows, and using
model reduction as enabler to do this. Last years however, things have changed.
We know that many control theoretical tools, albeit expensive, can be applied to
control fluid flow instabilities both in convective and globally unstable flows at
low Reynolds numbers. The use of these tools in nonlinear and turbulent flows
is the next step, and in the last years several groups have made progress. For
example, by treating the nonlinear terms of the Navier-Stokes equations as an
appropriate stochastic forcing. Another emerging branch in flow control is the
use of transfer operators (such as the Koopman operator). These methods can via
an appropriate nonlinear transformation of the system provide a linear system,
where analysis and control tools can be applied, followed by a transformation
back. A third example is the use of online adaptive self-learning techniques, such
as machine learning. In summary, the major current trends are to deal with non-
linearity and high-dimensionality at the same time in order to move from simple
linear 2D systems at low Reynolds numbers towards more complex systems.

Authors: In recent years, you are moving to nonlinear modeling, statistical clo-
sures and machine learning methods. Can you sketch the need for the inclusion
of nonlinear dynamics and noise in model-based flow control? How much can be
gained?

Prof. Bagheri: Moving in this direction is necessary, since in nearly all classical
engineering applications the Reynolds number is high and the flow physics is
sensitive to the external disturbance environment. It is clear that a flow-control
technology based on a systematic approach (in contrast to a trial-and-error
approach) that can be used in applications, has to deal with turbulence and
robustness.
However, we should also be realistic (and humble) for this task, since for the
coming decades our computational capability is limited to academic complex
problems, such as low-Reynolds number turbulent flows.
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Authors: It is common for practitioners to collect data to characterize a system,
develop a model, and then use this model for control. What are some of the
challenges and benefits associated with the online learning and adaptation of
controllers from data?

Prof. Bagheri: Indeed, data-driven methods are becoming increasingly important,
as large-scale high-performance computations have now taken its rightful place in
the community. When it comes to control of high-dimensional nonlinear chaotic
systems, in my opinion, an attractive approach is adaptive algorithms that are able
to adjust online to new dynamics in uncertain conditions. One of the challenges
we have encountered when using adaptive algorithms is that although they may
be fast enough to account for slow changes in conditions (e.g. variation in the
Reynolds number), they are often not sufficiently quick learners to account for
changes in the internal changes in the dynamics (e.g. emergence of new length
scales during the transition process).

Authors: In the coming decades, what do you envision as the academically most
rewarding grand-challenge problems of feedback control in fluid dynamics? You
work not only on a model-based control logic but also on model-free bio-inspired
actuators. Which evolutions do you foresee in experimental flow control on a
hardware and a theoretical level?

Prof. Bagheri: The grand challenge is to efficiently and robustly control turbu-
lence for Reynolds numbers that are relevant for everyday applications. Within the
next decade, we will be able to reduce turbulent skin friction drag with 30 % using
actuation/sensing at the wall at moderate Reynolds numbers. It will probably take
another decade or two, to devise both efficient and robust controllers for high-
Reynolds number turbulent flows, where the contribution to skin-friction is also
significant from large scale structures. In order to achieve these goals we need a
multi-disciplinary approach, where advances in fluid mechanics, material science
and surface chemistry are combined with applied mathematics, algorithms and
computer science.
For example, we are now looking into how soft, porous, lubricated, multi-scale
hierarchical materials possibly treated chemically can be used to manipulate an
overlying fluid. Although, mimicking biological surface coatings such as shark
skin and lotus leaf has proven useful, I believe that active control techniques can
provide the right guidance for using innovative surface materials for flow control.

Authors: We look forward to your next breakthroughs in flow control and thank
you for this interview!

Prof. Bagheri: Thank you. It was a pleasure.



Chapter 5
Taming Nonlinear Dynamics with MLC

Prediction is very difficult, especially about the future.
Niels Bohr

Frequency crosstalk is a ubiquitous phenomenon of turbulence and is of pivotal
importance in control. In the normal turbulence cascade, the coherent structures
feed increasingly smaller scales corresponding to increasingly larger frequencies with
energy via the transfer term. In the inverse cascade, the merging of coherent structures
yield increasingly larger scales or lower frequencies. All frequencies change the
base flow, i.e. low frequencies, via the Reynolds stress. Thus, interacting frequencies
range from the zero frequency corresponding to the mean flow to large frequencies
corresponding to the Kolmogorov scale.

Control design may exploit this frequency crosstalk. Numerous experiments have
demonstrated how high-frequency forcing can stabilize the fluid flow. Examples
include jets [236], mixing layers [206], wakes [264], car models [21], and the flow
over a backward-facing step [272]. Low frequency forcing can have a similar effect [5,
210]. In both cases, the coherent structures at a characteristic frequency are mitigated
by a different imposed frequency. In other words, frequency crosstalk is a control
enabler!

In this chapter, we present a generalized mean-field model as arguably the most
simple dynamical model for frequency crosstalk between unforced and forced fre-
quency components (Sect. 5.1). The control goal is to stabilize the unstable natural
frequency. While the control based on linearized dynamics (Chap. 3) is shown to
fail, MLC detects and exploits the frequency crosstalk mechanism in an unsuper-
vised manner (Sect. 5.2). In Sect. 5.3, the derivation of the investigated model is
sketched. This derivation contains the underlying approximations for the nonlinear
control approaches, against which MLC is benchmarked in Sect. 5.4. The last two
sections are analytical supplements for improved understanding of the model and
the MLC control. These sections require background in methods of nonlinear
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oscillation [148] and nonlinear dynamics [125] and may be skipped during the
first reading. Sect. 5.5 contains exercises for MLC control. A suggested reading
(Sect. 5.6) and an interview (Sect. 5.7) with Professor Mark Glauser, a pioneer in
nonlinear modeling and feedback turbulence control, conclude this chapter.

5.1 Generalized Mean-Field System

In this section, we review a generalized mean-field model which explains how low-
or high-frequency forcing stabilizes a self-amplified natural instability. The model
has been used to explain the stabilizing effect of low-frequency forcing of a wake
[210] and a resulting control design [6]. Similarly, the model has been applied to
high-frequency forcing of a high-lift airfoil [176] and model-based control design
[178]. Another application is an actuated swirling jet [201].

We refer to Sect. 5.3 for the derivation of the generalized mean-field model.
The result is a four-dimensional model which describes the evolution of the mode
amplitudes ai, i = 1, . . . , 4 of a Galerkin expansion for the fluctuation. Here, a1,
a2, is associated with the cosine and sine mode of natural vortex shedding and a3,
a4 describe analogous quantities for the periodically forced coherent structures. The
system of ordinary differential equation reads

da1

dt
= σ•a1 − ω•a2 (5.1a)

da2

dt
= σ•a2 + ω•a1 (5.1b)

da3

dt
= σ◦a3 − ω◦a4 (5.1c)

da4

dt
= σ◦a4 + ω◦a3 + g b (5.1d)

σ• = σ•� − β••r2
• − β•◦r2

◦ (5.1e)

ω• = ω•� + γ••r2
• + γ•◦r2

◦ (5.1f)

σ◦ = σ◦� − β◦•r2
• − β◦◦r2

◦ (5.1g)

ω◦ = ω◦� + γ◦•r2
• + γ◦◦r2

◦ . (5.1h)

The symbols are explained in Table 5.1.
The nonlinearity of Eq. (5.1) has two important effects. First, without forcing,

b ≡ 0, the second oscillator vanishes, a3 = a4 = 0. Thus, Eq. (5.1a), (5.1b), (5.1e),
and (5.1f) represent a Landau oscillator with linear oscillatory instability (σ•� > 0)
and a cubic damping (β•• > 0). In other words, the first oscillator has a globally
stable limit cycle as discussed in Sect. 4.4 for b ≡ 0. Second, with forcing at the
eigenfrequency of the stable oscillator, i.e. b = B cos (ω◦�t), the amplitude of the
second oscillator r◦ grows in proportion to the forcing amplitude B, as the nonlinear
terms of Eq. (5.1c) and (5.1d) are assumed to vanish (see Table 5.1). The stabilizing

http://dx.doi.org/10.1007/978-3-319-40624-4_4
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Table 5.1 Symbols of Sect. 5.1

Quantities related to the amplitude of the unstable oscillator (a1, a2)

r• Amplitude of the first oscillator

σ• Growth rate

σ•� = 0.1 Initial growth rate near the fixed point r• = 0

β•• = 1 Parameter for growth-rate change of σ• due to r•
β•◦ = 1 Parameter for growth-rate change of σ• due to r◦
Quantities related to the phase of the unstable oscillator (a1, a2)

φ• Phase of the first oscillator

ω• Frequency (analog to r• for the amplitude)

ω•� = 1, Initial frequency (analog to σ•� for the amplitude)

γ•• = 0, Parameter for frequency change due to r• (analog to β••)

γ•◦ = 0, Parameter for frequency change due to r◦ (analog to β•◦)

Quantities related to the amplitude of the stable oscillator (a3, a4)

r◦ Amplitude of the second oscillator

σ◦ Growth rate

σ◦� = −0.1 Initial growth rate near the fixed point r◦ = 0

β◦• = 0 Parameter for growth-rate change of σ◦ due to r•
β◦◦ = 0 Parameter for growthrate change of σ◦ due to r◦
g = 1 Gain of control command

Quantities related to the phase of the stable oscillator (a3, a4)

φ◦ Phase of the second oscillatory

ω◦ Frequency (analog to r◦ for the amplitude)

ω◦� = 10, Initial frequency (analog to σ◦� for the amplitude)

γ◦• = 0, Parameter for frequency change due to r• (analog to β◦•)

γ◦◦ = 0, Parameter for frequency change due to r◦ (analog to β◦◦)

The equations indicate the numerical values employed for the control problem

effect of the second oscillator on the first one requires β•◦ > 0. Thus, fluctuation
of the second oscillator reduces the growth rate of the first oscillator. The minimum
amplitude r◦ for complete stabilization r• = 0 is r◦ = √

σ•�/β•◦, as can be derived
from σ• = 0 in Eq. (5.1e). Physically, the forcing changes the base flow such that
the production of the unstable coherent structures is reduced below the dissipative
term.

In the following, Eq. (5.1) is simplified for the purpose of defining a control prob-
lem in which a high-frequency stable oscillator stabilizes a self-amplified amplitude-
limited one. All coefficients which are not needed to illustrate the frequency crosstalk
are set to zero, e.g. the Landau coefficients for the nonlinear terms of the second sta-
ble oscillator (β◦◦ = β◦• = γ◦◦ = γ◦• = 0) and for the frequency variation of the
second oscillator (γ•• = γ•◦ = 0). The small growth or decay rates of the oscillators
are set to ±0.1, i.e. σ•� = 0.1 and σ◦� = −0.1. The large frequency of the second
oscillator is set to ω◦� = 10. The remaining quantities, i.e. the frequency and Landau
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coefficients of the first oscillator and the gain of the forcing term, are set to unity,
ω•� = β•• = β•◦ = g = 1. The parameter values are listed in Table 5.1.

The resulting system reads:

da1

dt
= σ a1 − a2 (5.2a)

da2

dt
= σ a2 + a1 (5.2b)

da3

dt
= −0.1 a3 − 10 a4 (5.2c)

da4

dt
= −0.1 a4 + 10 a3 + b (5.2d)

σ = 0.1 − a2
1 − a2

2 − a2
3 − a2

4. (5.2e)

For the initial condition at t = 0 we choose a point close to the unstable fixed point,

a(0) = [a1, a2, a3, a4]T (0) = [0.01, 0, 0, 0]T . (5.3)

The superscript ‘T ’ denotes the transpose of the row vector.
The transient and actuated dynamics of Eq. (5.2) are illustrated in Fig. 5.1. The

initial period shows an unforced transient towards the limit cycle. Then, actuation
excites the stable oscillator which mitigates the first one via the growth rate.

The cost function to be minimized contains the average fluctuation level of the
unstable oscillator

Ja = a2
1 + a2

2 (5.4)

penalized by the actuation cost
Jb = b2 (5.5)

with penalization parameter γ ,

J := Ja + γ Jb = a2
1 + a2

2 + γ b2 != min. (5.6)

The overbar denotes numerically an average over the time window [20π, 220π ], i.e.
the average of a time-dependent function f (t) reads

f (t) := 1

200π

220π∫

20π

dt f (t).

The range of integration starts at t0 = 20π , corresponding to 10 periods of the
unstable oscillator, so that transients have time to die out. The upper integration bound
is t1 = 220π to include 100 periods, which is sufficient for a statistical average. It
should be noted that MLC requires only an approximately accurate ordering of the
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Fig. 5.1 Dynamics of the generalized mean-field model (5.2) with the initial condition (5.3).
Periodic forcing b = cos(10t) is applied at t ≥ 20π

costs associated with the considered control laws. Hence, we refrain from using, say,
1000 periods to obtain slightly more accurate values.

A canonical strategy for a stabilizing control employs a linearization of the evo-
lution equation around the fixed point. The generalized mean-field model (5.2) has
the fixed point a1 = a2 = a3 = a4 = 0. Linearizing around that point yields two
uncoupled oscillators

da1

dt
= 0.1 a1 − a2 (5.7a)
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da2

dt
= 0.1 a2 + a1 (5.7b)

da3

dt
= −0.1 a3 − 10 a4 (5.7c)

da4

dt
= −0.1 a4 + 10 a3 + b. (5.7d)

The amplitude of the first oscillator grows without bound while the second oscil-
lator converges to its fixed point a3 = a4 = 0 without forcing. Evidently, the
unstable oscillator cannot be stabilized by arbitrary actuation commands b, because
the linearization has removed the pivotal nonlinear frequency crosstalk encoded in
Eq. (5.1e). In terms of control theory from Chap. 3, the linearized system is not
controllable.

5.2 Machine Learning Control

In this section, the control problem described in Sect. 5.1 is solved with MLC.
Sect. 5.2.1 specifies the mathematical problem to be solved. In Sect. 5.2.2, the
choice of parameters of MLC is outlined and motivated. The results are provided in
Sect. 5.2.3.

5.2.1 Formulation of the Control Problem

The control problem for MLC consists of minimizing the cost function J (5.6) for
the simplified generalized mean-field model (5.2) under initial condition (5.3). The
penalization parameter is chosen to be γ = 0.01. The system is integrated numeri-
cally for a time interval of [20π, 220π ], which allows for an unrecorded 10 period
transient and evaluates 100 periods of the unstable oscillator deemed sufficient for
representative statistics. At this point, we know that the linearized dynamics will not
reveal the enabling frequency crosstalk mechanism and that an open-loop periodic
forcing can completely stabilize the first oscillator. We search for an autonomous
full-state feedback law minimizing the cost function,

b = K(a) = K(a1, a2, a3, a4). (5.8)

Thus, we explore all potential non-linear feedback mechanisms stabilizing the first
oscillator. The optimization problem formally reads

Kopt(a) = argmin
K(a)

J [K(a)]
∣
∣
subject to Eq. (5.2),
and initial condition (5.3)

(5.9)

http://dx.doi.org/10.1007/978-3-319-40624-4_3
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Table 5.2 MLC parameters used for the control of the generalized mean-field model (5.2)

Parameter Ni Pr Pm Pc Np Ne

Value 1000 0.1 0.3 0.6 7 1

Operations +,−,×, /, sin, exp, log, tanh

where Kopt(a) denotes the optimal control law which minimizes the cost. The depen-
dency of the solution on the initial condition might be considered problematic and
should normally be avoided. However, we recall that actuation will be evaluated after
a long transient time. Secondly, the results have been found to hardly change after
incorporating an ensemble of initial conditions in the regression problem (5.9).

5.2.2 MLC Parameters

The function space of MLC is explored by using a set of elementary operations
(+,−,×, /) and transcendental (exp, sin, ln and tanh) functions. The functions
are ‘protected’ to allow them to take arbitrary arguments in R (e.g. a thresholding
is achieved on denominators in divisions to avoid division by zero). Additionally,
the actuation command is limited to the range [−1 , 1] to emulate an experimental
amplitude-bounded actuator. Up to Ng = 50 generations comprising Ni = 1000
individuals are processed. The tournament size is Np = 7, elitism is set to ne = 1,
the probabilities of replication, crossover and mutation are Pr = 0.1, Pc = 0.6 and
Pm = 0.3 respectively (see Table 5.2).

5.2.3 MLC Results

Figure 5.2 displays the MLC learning process associated with the optimization prob-
lem (5.9). The enforced ordering of the individuals with respect to their cost

Jj1 ≤ Jj2 ≤ . . . ≤ JjNi
j = 1, . . . ,Ng

is evidenced in the jth column by increasing J-value with increasing i. The learning
of increasingly better control laws with increasing generation number j can be seen
from decreasing J values towards the right. In particular, elitism enforces that the
cost of the best individual cannot increase,

J1
1 ≥ J2

1 ≥ . . . ≥ J
Ng

1 .

The ‘spectrogram’ of all computed Jji is visualized in Fig. 5.3. Each generation j
is seen to consist of a large range of cost values.
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j

i
J

Fig. 5.2 MLC learning process for the control problem (5.9) with the generalized mean-field
model. The abscissa displays the generation number j. The ordinate refers to the individual i. The
background shows the value of the cost function Jji for each tested individual

The best individual i = 1 in the last generation j = Ng defines solution of
regression problem for the MLC feedback law (5.9). The corresponding actuated
dynamics is depicted in Fig. 5.4. Intriguingly, MLC does not emulate periodic forcing
with regular ‘soft’ excitation of the second oscillator. Instead, it chooses to stabilize
the first oscillator by occasional hard ‘kicks’, i.e. by strongly exciting the second
oscillator and decreasing the growth rate to low negative values.

The instance of these kicks is best appreciated in a logarithmic plot of the fluc-
tuation levels of both oscillators (Fig. 5.5). The kicks occur at fluctuation levels of
roughly 10−5 and last until this level has been decreased to around 10−40 or lower.

The MLC law solving the regression problem (5.9) is visualized in Fig. 5.6 as
binary tree. The formula can be expressed as follows:

b = K1(a4) × K2(a1, a2, a3, a4) (5.10)

with
K1(a4) = 5.475 × a4

and

K2(a1, a2, a3, a4) =
(

(
a4

4.245 )×(sin(tanh(
a4

−5.987 )))

tanh(a2)
+ a2

)

cos(3.053)
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j

J

Fig. 5.3 Same MLC run as Fig. 5.2. Now, the Jji values, i = 1, . . . ,Ni, for each generation j are
indicated on a logarithmic ordinate scale

×
(

8.965
a1

tanh(a2)
+

a2
cos(3.053)

a4+cos(−8.208)

log(a3)

)

×

⎛

⎜
⎝

(
a1
a1
a4

)

(
(sin(a4))×(tanh((4.640)×(a2)))

−6.912−(a4)

)

×
(

a1
(a2)×(a4)

)

a2
a1

+tanh(a2)

⎞

⎟
⎠ ×

(
a1
a2
a4

)

−7.092
.

The function K1(a4) describes a phasor control that destabilizes the stable oscillator.
The functionK2(a1, a2, a3, a4) acts as a gain dominated by the energy of the unstable
oscillator. This control law cannot be derived from a linearized model of the system.
Moreover, (slightly) less energy is used as compared to the best periodic excitation.

A revealing illustration of the MLC control law in a four-dimensional space is a
challenge. In the following, we propose a generic strategy. Let p(a) be the probability
density associated with the MLC-actuated dynamics (5.2). Thus, the expectation
value of the actuation command b = K(a1, a2, a3, a4) at given values a1 and a2 can
be formally defined:

〈b〉• = 〈K〉• =
∫ ∫

p(a1, a2, a3, a4) K(a1, a2, a3, a4) da3 da4. (5.11)
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Fig. 5.4 Dynamics of the MLC-controlled generalized mean-field model (5.2)

The analogous quantity for the second oscillator reads

〈b〉◦ = 〈K〉◦ =
∫ ∫

p(a1, a2, a3, a4) K(a1, a2, a3, a4) da1 da2. (5.12)

Figure 5.7 depicts this expectation value in the a1-a2 plane. More precisely, we
employ polar coordinates a1 = r• cos φ•, a2 = r• sin φ•, and plot the radius on
a logarithmic scale. Thus, the phase associated with the expectation value of the
control command b can be resolved even at small fluctuation values. Expectedly, no
strong phase preference φ• for control action is apparent. Each period of the unstable
oscillator is associated with 20 sign changes of 〈b〉•, because the actuation drives the
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Fig. 5.5 Energy levels of the oscillators displayed in Fig. 5.4. When the energy contained in the
first oscillator (top) is larger than 10−10, the control (bottom) excites the second oscillator, and its
energy grows to roughly 3 so that σ reaches approximately −6 ± 1. This results in a fast decay of
the energy in the first oscillator after which the control goes back to a “stand-by” mode
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Fig. 5.6 Tree representation of the MLC law solving the regression problem (5.9) and used in
Figs. 5.4 and 5.5
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Fig. 5.7 Visualization of the MLC feedback law (5.9) in the a1-a2 plane. The figure displays the
expectation value (5.11)
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Fig. 5.8 Same as Fig. 5.7 but for (5.12) the a3-a4 plane

stable high-frequency oscillator. The mostly white inner ring corresponds to regions
without available data from the simulation. Figure 5.8 is an analogous visualization
of the control law (5.12) for the a3-a4 plane. This figure reveals the destabilizing
factor K1(a4) of the MLC control law (5.10).

5.3 Derivation Outline for the Generalized Mean-Field
Model

In this section, we outline the derivation of the generalized mean-field model of
Sect. 5.1. The underlying approximations will be used in the alternative control
design (Sect. 5.4). We consider an incompressible uniform flow around an obstacle
in a steady domain 	. The location is denoted by x = (x, y, z) ∈ 	 and the time
by t. Here, x, y, z are Cartesian coordinates. For a nominally two-dimensional shear
flow, x points in the direction of the flow, y in the direction of the main gradient
and z is the spanwise coordinate. The unit vectors in x, y and z directors are ex,
ey, ez, respectively. Let u = (u, v,w) be the velocity and and p be the pressure in
this domain, respectively. Here, u, v, w are the Cartesian coordinates of the velocity.
Let D and U represent the characteristic size and free-stream velocity, respectively.
The incompressible Newtonian fluid is characterized by its density ρ and kinematic
viscosity ν. The properties of the flow are determined by the Reynolds number
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Re = UD/ν. In the following, all quantities are assumed to be non-dimensionalized
with respect to the length scale D, the velocity scale U and density ρ.

The mass conservation or equation of continuity reads

∇ · u(x, t) = 0. (5.13)

Here, ‘∇’ represents the Nabla operator with respect to x and ‘·’ an inner product. The
momentum balance for an incompressible Newtonian fluid is given by the Navier-
Stokes equations:

∂tu(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t) + 1

Re
�u(x, t). (5.14)

The left-hand side corresponds to the acceleration of the fluid, the right-hand side
contains the pressure and viscous forces. Here, ∇u represents the velocity Jacobian,
i.e. the outer product of ∇ with u. � denotes the Laplace operator.

At the domain boundary ∂	, the velocity satisfies Dirichlet conditions: it vanishes
at the stationary body (no-slip condition) and assumes free-stream velocity at infinity,

u(x, t)|∂	 =
{
0 at the body;

ex at infinity.
(5.15)

Let v(x) represent the initial condition at time t = 0,

u(x, 0) = v(x), ∀x ∈ 	. (5.16)

Equations (5.13)–(5.16) define an initial boundary value problem which is assumed
to have a unique solution under sufficiently smooth initial and boundary conditions.
The uniqueness is mathematically proven for some two-dimensional flows [169] but
is still an open problem for three-dimensional flows. It may be noted that examples
of non-uniqueness are found for unsteady boundary conditions [225].

In the following, the derivation of a least-order model for flows dominated by two
frequencies will be sketched. Details can be found in the original literature [176].
Generally, the Navier–Stokes equations are assumed to have one (and only one)
steady solution us(x) with corresponding pressure field ps(x),

us(x) · ∇us(x) = −∇ps(x) + 1

Re
�us(x). (5.17)

There exist only few known exceptions of flows with no steady solution or mul-
tiple solutions which concern closed flows, like diffuser flow. Let u•(x, t) denote
the frequency contribution at angular frequency ω• of the unstable unforced flow.
Similarly, let u◦(x, t) represent the actuated contribution at angular frequency ω◦.
The later component is assumed to vanish without forcing. ω• and ω◦ are assumed
be incommensurable so that no lock-in occurs. Amplitudes and frequencies of both
components may slowly vary with time. Correspondingly slow base flow changes due
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to the Reynolds stress are included in u(x, t). The resulting velocity decomposition
reads

u(x, t) = us(x) + u(x, t) + u•(x, t) + u◦(x, t). (5.18)

In a simple, yet not unrealistic case, the unforced oscillation may be well approx-
imated by a linear combination of two spatial modes u1(x) and u2(x) with time-
dependent coefficients a1(t) and a2(t). These modes may be the first POD modes,
the real and imaginary part of the dominant DMD mode [229, 238] or cosine and sine
component of a Fourier mode at ω•. Similarly, the actuated oscillatory structures can
be expected to be well resolved by a linear combination of two modesu3(x) andu4(x)
with amplitudes a3(t) and a4(t). For simplicity, the modes are assumed to build an
orthonormal basis without loss of generality, as they can easily be orthonormalized.
Summarizing,

u•(x, t) = a1(t) u1(x) + a2(t) u2(x) (5.19a)

u◦(x, t) = a3(t) u3(x) + a4(t) u4(x). (5.19b)

Following Kryloff and Bogoliubov [167], the modal amplitudes ai, i = 1, . . . , 4 are
considered to be nearly pure harmonics, i.e.

a1(t) = r• cos φ• (5.20a)

a2(t) = r• sin φ• (5.20b)

a3(t) = r◦ cos φ◦ (5.20c)

a4(t) = r◦ sin φ◦ (5.20d)
dφ•
dt

= ω• (5.20e)

dφ◦
dt

= ω◦, (5.20f)

where the amplitudes r• and r◦ and frequenciesω• andω◦ are slowly varying functions
of time. It may be noted that (5.20) allows for arbitrary phase offsets. Thus, the
Reynolds decomposition of the flow in Eq. (5.18) into a mean u and a fluctuation u′
reads

u(x, t) = us(x) + u(x, t) (5.21a)

u′(x, t) =
4∑

i=1

ai(t) ui(x). (5.21b)

The mean velocity is understood as an ensemble or short-term average to allow for
slow unforced or actuated transients.
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The base-flow deformation u is inferred from the Reynolds equation, i.e. time-
averaged Navier–Stokes equations (5.14). We substitute equation (5.21a) in (5.14)
and subtract the steady Navier–Stokes equations (5.17). Averaging and neglecting
second-order terms in the base-flow deformation u yields

us · ∇u + u · ∇us = −∇p + 1

Re
�u − ∇ · u′ ⊗ u′. (5.22)

In this equation, the spatio-temporal dependencies have been dropped for brevity. The
right-most term is the Reynolds-stress force driving the base-flow deformation. The
symbol ‘⊗’ emphasizes the outer product between the fluctuation vectors, leading
to a matrix after the Nabla operator. Note that this system of partial differential
equations is linear in u and has a single forcing term. The pressure gradient can
be considered as a projection on an incompressible velocity subspace, i.e. it neither
interferes with the linearity in u nor with the forcing term.

The Reynolds stress is given by

u′ ⊗ u′ = 1

2
r2
• (u1 ⊗ u1 + u2 ⊗ u2) + 1

2
r2
◦ (u3 ⊗ u3 + u4 ⊗ u4) (5.23)

exploiting (5.20). Evidently, the Reynolds-stress term has one contribution at the
natural frequency ω• and another one at the actuated one ω◦. By the linear nature
of (5.22), the base-flow deformation of both frequency components of the Reynolds
stress are additive and can be associated with two shift-modes [196, 199]. Let a5 u5

be the base-flow change corresponding to the natural frequency ω• and a6 u6 the
analog of the actuated frequency ω◦. From (5.22) and (5.23), we observe

a5 = α•r2
• = α•

(
a2

1 + a2
2

)
(5.24a)

a6 = α◦r2
◦ = α◦

(
a2

3 + a2
4

)
. (5.24b)

These equations define the mean-field manifolds hosting slow transients in the 6-
dimensional state space a = [a1, a2, . . . , a6]T .

The dynamic equations for ai, i = 1, 2, 3, 4 can be obtained from the Navier–
Stokes equations (5.14) exploiting the Kryloff–Bogoliubov approximation. Filtering
(5.14) for ω• terms ignores all constant and quadratic terms since none of them can
give rise to the frequency ω•. The projection onto ui for i = 1, 2 yields an oscilla-
tor which is base-flow dependent. A similar reasoning holds for the ω◦ frequency.
A volume force gives rise to an additive forcing term gb where b is the actua-
tion command and g the gain. Without loss of generality, this forcing acts on the
dynamic equation for a4, as the modes ui, i = 3, 4 can be rotated. Summarizing, we
obtain (5.1).
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5.4 Alternative Control Approaches

In the following, we will assess the efficiency of machine learning control and bench-
mark it against periodic forcing (Sect. 5.4.1), and against an energy-based closed-
loop control design (Sect. 5.4.2). In Sect. 5.4.3, the efficiency of MLC on-off con-
trol is assessed in an analytical framework. We rewrite the generalized mean-field
model (5.2), giving all growth-rates symbols:

da1

dt
= σ• a1 − a2 (5.25a)

da2

dt
= σ• a2 + a1 (5.25b)

da3

dt
= σ◦ a3 − 10 a4 (5.25c)

da4

dt
= σ◦ a4 + 10 a3 + b (5.25d)

σ• = σ� − a2
1 − a2

2 − a2
3 − a2

4 (5.25e)

σ� = 0.1 (5.25f)

σ◦ = −0.1. (5.25g)

In the analytical computations, we will keep the growth-rate symbols of (5.25e)–
(5.25g) to track the physical meaning of each formula.

5.4.1 Open-Loop Forcing

In this section, we minimize the cost functional (5.6) with (open-loop) periodic
forcing. The stable oscillator is efficiently excited at its eigenfrequency

b = B cos (10t) . (5.26)

The resulting fluctuation amplitude is proportional to the forcing amplitude, or, equiv-
alently,

r2
◦ = κ B2. (5.27)

Here, κ is proportional to the reciprocal of the damping rate σ◦.
In the sequel, we apply the Kryloff–Bogoliubov approximation (5.20) for slowly

varying amplitudes. Then, the first oscillator assumes a non-vanishing amplitude
r• > 0 if and only if

dr•
dt

= σ• r• = 0.
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Equation (5.25e) implies the fluctuation level

Ja = r2
• = σ� − r2

◦ = σ� − κ B2. (5.28)

The oscillation completely vanishes if σ• ≤ 0 or, equivalently B2 ≥ σ�/κ . The
associated actuation cost reads

Jb = b2 = B2/2. (5.29)

Finally, the cost functional (5.6) reads

J = Ja + γ Jb = σ� − κ B2 + γ

2
B2 = σ� +

[γ

2
− κ

]
B2. (5.30)

At vanishing actuation B = 0, we have the unactuated limit cycle and

J• = σ�. (5.31)

For later reference, we give this cost value the subscript ‘•’. Complete stabilization
r• = 0 can be achieved with the minimum actuation level B2 = σ�/κ , corresponding
to the cost

J◦ = γ σ�

2 κ
. (5.32)

For later reference, this cost value has the subscript ‘◦’. Intermediate actuation ampli-
tudes 0 < B2 < σ�/κ yield intermediate costs. The trade-off between achieved sta-
bilization and actuation cost is easily appreciated in the Pareto diagram in Fig. 5.9.

Intriguingly, the solution of the optimization problem depends discontinuously
on γ . If γ < γcrit := 2 κ , J◦ < J• and minimization of the cost functional leads to
complete stabilization of the unstable oscillator. If γ > γcrit , minimization leads to
the unactuated limit cycle with vanishing forcing. If γ = γcrit , any forcing 0 ≤ B2 ≤
σ�/κ leads to the same J and the minimization problem has no unique solution.
The γ chosen in Sect. 5.2.1 was subcritical. Hence, MLC has targeted complete
stabilization.

The periodic forcing constitutes a benchmark against which closed-loop control
can be measured. Periodic forcing is easily realizable in any system and any experi-
ment. The optimal forcing parameters can be determined, e.g. by gradient search or
extremum/slope seeking. The corresponding Pareto diagram illustrates which level
of stabilization can be achieved at which actuation cost. In principle, the best closed-
loop control may be inside or outside the triangle Ja + Jb ≤ J•. There is no a priori
guarantee that closing the loop will beat periodic forcing. We shall explore this aspect
in later sections.

We shall not pause to inquire if Eq. (5.26) defines the best open-loop actuation
command b = K(t) with respect to the cost-functional.
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Fig. 5.9 Pareto diagram for the stabilization of the generalized mean-field model (5.2). The black
line denotes equilibrium points for open-loop forcing from the unforced limit cycle (B = 0) to
complete stabilization r• = 0 according to Eq. (5.30). For more details see text

5.4.2 Closed-Loop Forcing

In this section, we design a closed-loop forcing (5.8) which stabilizes the first oscil-
lator. As seen in Sect. 5.1, linear control theory is not applicable. Instead, we employ
an energy-based control design under the Kryloff–Bogoliubov approximation (5.20).

The starting point is the fluctuation level

Ja = r2• = r2
• = a2

1 + a2
2.

We assume an average over an infinite time window, i.e. we neglect transient behav-
ior. Thus, the averaging sign over r2• is redundant under the Kryloff–Bogoliubov
approximation. Differentiating with respect to time and employing the evolution
equations (5.25a), (5.25b) and dividing by 2 yields

r•
r•
dt

= a1
a1

dt
+ a2

a2

dt
= σ• r2

• .

Stabilization of the first oscillator implies r• = 0 by definition and σ• < 0 for stability
under noise. From Eq. (5.25e), this requires an excitation of the second oscillator
to the level r2◦ ≥ σ�. It should be noted that the Kryloff–Bogoliubov assumption
implies slowly varying amplitudes and accounting for time-averaging effects is not
necessary. Hence, stabilization of the first oscillator implies a destabilizing control
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for the second one. We proceed as with the first oscillator, and differentiate

r2
◦ = a2

3 + a2
4

with respect to time, employ Eq. (5.25c), (5.25d), and divide by 2 to obtain

r◦
r◦
dt

= a3
a3

dt
+ a4

a4

dt
= σ◦ r2

◦ + a4b. (5.33)

For limit-cycle behavior, the average energy a4b needs to overcome the dissipation
σ◦r2◦ .

0 = σ◦r2
◦ + a4b. (5.34)

We see that b contributes to the fluctuation energy only if it has the same sign as a4.
This is satisfied by the linear feedback ansatz

b = Ka4, (5.35)

with K > 0. The sinusoidal behavior (5.20d) allows one to estimate the actuation
power with a4b = Ka2

4 = Kr2◦/2. Thus, the steady-state gain can be derived from
Eq. (5.34) to be K = −2σ◦, leading to

b = −2σ◦ a4. (5.36)

This control law implies a vanishing growth rate, or r◦ = const, where the constant
is determined by the initial conditions. In other words, Eq. (5.36) does not drive the
actuated dynamics towards specific limit-cycle radii.

In contrast, the nonlinear gain

b = K a4, where K = −2σ◦ + σ� − r2
◦ (5.37)

ensures that the minimal fluctuation level r2◦ = σ� is stabilized. Substituting Eq. (5.37)
in (5.33) and averaging over one period yields the following amplitude equation for
the actuated dynamics:

dr◦
dt

= 1

2
r◦

(
σ� − r2

◦
)
.

A fluctuation level that is too small (large) is compensated for by a larger (smaller)
gain K as compared to the equilibrium value −2σ◦.

The above nonlinear feedback law (5.37) stabilizes the desired fluctuation level
of the second oscillator but does not compensate for any error of the dynamics. The
alternative law

b = K a4 where K = −2σ◦ + 10 r2
• (5.38)

increases the gain sharply if the first oscillator is not stabilized.
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In summary, the discussed nonlinear feedback laws lead to the optimal periodic
forcing of Sect. 5.4.1 with the same cost functional. There is no steady-state perfor-
mance benefit from using the discussed closed-loop control. This equivalence is not
overly surprising as the very Kryloff–Bogoliubov assumption implies nearly peri-
odic behavior of both oscillators. Yet, feedback can buy an improved stabilization in
case of model uncertainty, e.g. accounting for unknown errors of the growth rates.
Accounting for model errors is one of the very purposes of feedback.

5.4.3 Short-Term Forcing

In this section, we analytically assess the benefits from strong short-term periodic
forcing (5.26) to reduce r• from rmax � √

σ� to rmin. This forcing is an idealization
of the MLC law in Sect. 5.2. Here, rmax is at least 4 orders of magnitude below its
unforced limit-cycle value.

Let σa < 0 be the commanded decay rate during periodic forcing. According to
Eq. (5.25e),

σa = σ� − r2
• − r2

◦ ≈ 0.1 − r2
◦ .

In this approximation, we ignore r2• ≤ r2
max � σ� by the smallness assumption of

rmax. In addition, we neglect transient effects, as the second oscillator is forced over
many cycles. Then, we can use the quasi-equilibrium assumption of Sect. 5.4.1 and
arrive at

σa = σ� − κB2. (5.39)

By similar reasoning, the unactuated growth rate reads

σu = σ�, (5.40)

since r◦ vanishes without actuation and r• is assumed to be negligible as compared
to

√
σ�. Summarizing,

dr•
dt

= σ• r• where σ• =
{

σa during actuation

σ� otherwise
. (5.41)

The time interval τa for the actuation is given by

− σa τa = ln

[
rmax

rmin

]

. (5.42)
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Similarly, the time for the unforced period τu reads

σ� τu = ln

[
rmax

rmin

]

. (5.43)

The period for one on-off cycle is the sum:

τ = τa + τu =
[

− 1

σa
+ 1

σ�

]

ln

[
rmax

rmin

]

. (5.44)

The ratio of the actuation time with respect to this period is

τa

τ
=

−1
σa[

1
σ�

− 1
σa

] = 1
[
1 − σa

σ�

] = 1
[
1 − σ�−κB2

σ�

] = σ�

κB2
. (5.45)

The stronger the actuation, the smaller the relative actuation time. Note that the ratio
does not depend on the limits imposed on r•.

Following earlier reasoning, the stabilization can be considered complete, since
Ja = r2• � J•. The only contribution to the cost functional comes from the actuation.
The average actuation level is the product between the relative actuation time τa/τ

and the maximum actuation level B2/2:

J = γ b2 = γ
τ◦
τ

B2

2
= γ

σ�

κB2

B2

2
= γ

σ�

2κ
= J•. (5.46)

Intriguingly, the cost of on-off actuation is identical to the best periodic forcing J•
of Eq. (5.32). Numerically the MLC control law is found to be slightly better due
to a finite-window effect. The difference decreases with increasing integration time.
MLC exploits even this finite-window effect for closed-loop control design.

The decision to turn actuation on or off in the framework of full-state feed-
back (5.8) is far from obvious. One ‘relay switch’ using the Heaviside function
H reads

χ = H (r• − rmax) − H (rmin − r•) + H
(−σ� + r2

◦
)
.

If r• > rmax, χ > 0 and actuation is turned on. If r• < rmin, χ ≤ 0 and actuation
is turned off. At intermediate values rmin < r• < rmax, χ is kept on if actuation
has a damping effect (actuated transient) and χ is kept off if the second oscillator is
not excited enough. MLC has constructed such a switch for an incremental finite-
window performance benefit. This is an impressive performance of an automated
control design.
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5.5 Exercises

Exercise 5–1: Consider the following three coupled oscillators

da1

dt
= σ1 a1 − a2 (5.47a)

da2

dt
= σ1 a2 + a1 (5.47b)

da3

dt
= σ2 a3 − πa4 (5.47c)

da4

dt
= σ2 a4 + πa3 + b (5.47d)

da5

dt
= σ3 a5 − π2 a6 (5.47e)

da6

dt
= σ3 a6 + π2a5 + b (5.47f)

σ1 = −r2
1 + r2

2 − r2
3 (5.47g)

σ2 = 0.1 − r2
2 (5.47h)

σ3 = −0.1, (5.47i)

where r2
1 := a2

1 + a2
2, r2

2 := a2
3 + a2

4, and r2
3 := a2

5 + a2
6. Explore the unforced

behavior (b ≡ 0) by numerical simulations. Explain the coupling between the
oscillators in words. Derive an analytical solution of the unforced system (5.47).

Exercise 5–2: Stabilize the first oscillator of Eq. (5.47) with a full-state feedback
law b = b(a) by minimizing

J = r2
1 + b2. (5.48)

Linearize (5.47) and design a corresponding LQR controller (see Chap. 4). Explain
the results.

Exercise 5–3: Stabilize the first oscillator of (5.47) with a full-state nonlinear feed-
back law b = b(a) by minimizing J of Eq. (5.48). Use the Kryloff–Bogoliubov
approximation of Sect. 5.4. Explain the results.

Exercise 5–4: Find the best periodic actuation

b = B cos (ωt) . (5.49)

(a) Set B = 1 and perform a frequency scan of ω, which effects all oscillator
amplitudes r1, r2, r3. Can you explain the extrema of the amplitudes?

(b) Determine analytically the best control law with smallest J of Eq. (5.48),
i.e. determine the best B and 	. Justify physically why these parameters are

http://dx.doi.org/10.1007/978-3-319-40624-4_4
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optimal (no proof needed). Is this open-loop control better or worse than the
closed-loop of the previous exercise? Why?

Exercise 5–5: Apply MLC with the same parameters as in Sect. 5.2. Take

a(0) = [0.1, 0, 0.1, 0, 0.1, 0]T

as initial condition, integrate 20 periods of the first oscillator (t ∈ [0, 20π ]) and
evaluate the cost functional in the next 100 periods (t ∈ [20π, 220π ]). Bound the
actuation by the interval [−1, 1]. Can you explain the control law and solution?
How does it compare with the closed-loop and open-loop solution of Exercises 3
and 4?

5.6 Suggested Reading

Texts

(1) Turbulence, Coherent Structures, Dynamical Systems and Symmetry, by
P. Holmes, J.L. Lumley, G. Berkooz and C.W. Rowley, 2012 [138].
The book represents a classic of POD Galerkin models of turbulent flows from
the pioneers of the field.

(2) Nonlinear Ordinary Differential Equations, by D.W. Jordan and P. Smith,
1988 [148].
This textbook provides an easily comprehensible and thorough introduction into
nonlinear dynamics and the Kryloff–Bogoliubov approximation used in this
chapter.

Seminal papers

(1) Rods and plates: series occurring in various questions regarding the elas-
tic equilibrium of rods and plates (translated), by B.G. Galerkin 1915 [109].
This seminal paper proposed an elegant method for deriving ordinary differential
equations (ODE) from partial differential equations (PDE) using modal expan-
sions. This Galerkin method has become a very foundation for over 100 years of
research in computational methods for PDEs and in reduced-order modeling.

(2) Nonlinear stability theory, by J.T. Stuart, 1971 [257].
This review article summarizes the development of mean-field models which
were pioneered by the author and which are the foundation of this chapter.
J.T. Stuart was the first to derive a low-order Galerkin model explaining the
coupling between fluctuation and base flow.
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5.7 Interview with Professor Mark N. Glauser

Mark Glauser is Professor of Mechanical and Aerospace Engineering and Associate
Dean for Research and Doctoral Programs at the College of Engineering and Com-
puter Science of Syracuse University, NY, USA. He is also Professor of Physics at
the College of Arts and Sciences of the same university.

As Associate Dean for Research and Doctoral Programs, Prof. Glauser is respon-
sible for overseeing current research activities and coordinating the development of
the college’s future research portfolio. In his own research portfolio, Prof. Glauser,
along with his co-workers, post-docs, graduate and undergraduate students, con-
ducts major experimental, computational and theoretical efforts to apply low-
dimensionalmodels to turbulent and transitional flows for understandingandcontrol.
Flows studied range from high speed aerospace type applications to those around
thermal breathing manikins within the micro-environment. Recent work involves
developing closed-loop flow control methods based on the use of Proper Orthogonal
Decomposition (POD) and Stochastic Measurement (SM) for various turbulent flows
including that over a NACA 4412 airfoil, high speed (high subsonic and supersonic)
turbulent jets for noise reduction/enhanced mixing, 3D separated flow control over
turrets for improving aero-optics and for improving efficiency and reducing unsteady
loading on large wind turbines. Prof. Glauser has or is currently serving as: a mem-
ber of the US Army Science Board where he just finished co-chairing a 2014–2015
study on The Future of Army Aviation; as a member of the NASA Langley Fundamen-
tal Aerodynamics Peer Review Panel (2014, 2009); Associate Editor, AIAA Journal
(2007–2016); Program Manager for the Turbulence and Internal Flows Program at
the US Air Force Office of Scientific Research (AFOSR) from 1996–1999; meeting
Chair for the 56th APSAnnualMeeting of theDivision of FluidDynamics, November
2003; Technical Chair for the AIAA Summer Fluid Dynamics Meeting, June 2006;
an ABET evaluator for Aerospace Engineering programs since 2004; and an ABET
EAC member (2013–2015). Prof. Glauser has obtained more than 12 million dollars
in research funding as PI or Co-PI from AFOSR, NSF, NASA, EPA, DoE, Dantec,
GE, United Technologies, Spectral Energies, ClearScience Corporation and others.
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Prof. Glauser has published more than 110 peer-reviewed publications and confer-
ence proceedings and has presented more than 100 invited presentations and keynote
talks worldwide. Over the past 25+ years he has mentored several postdocs andmore
than 30 Ph.D. and MS students. Prof. Glauser is a Fellow of the American Institute
of Aeronautics and Astronautics, the American Society of Mechanical Engineers,
the American Physical Society, and the Institute of Physics (UK). In 1995, he was a
Fulbright Scholar in Poitiers, France. Prof. Glauser received his BS (1982) and his
Ph.D. (1987) from the Department of Mechanical and Aerospace Engineering of the
University at Buffalo SUNY, NY, USA.

Authors: Dear Mark, you have been one of few pioneers in reduced-order model-
ing of turbulence, particularly for application-related experiments. What did you
learn about flow control? Where do you still see rewarding research opportunities
for young talented researchers?

Prof. Glauser: Beginning with the ActiveWing dynamic separation flow work
(joint with Lumley, Leibovich and Berkooz, see Taylor and Glauser 2004 [261])
in the mid 1990 s to the NACA 4412 closed-loop separation control work (see
Pinier et al. 2007 [215]), to the aero-optics related turret separation control work
(Wallace et al. 2012 [265, 274]) and to our more recent high speed jet control work
[26, 175], I have learned that this is a hard problem and that the most progress is
made when there is strong interaction between controls and fluids experts with a
nice mix of experimentalists, theorists and omputationalists from both fields.
It is my view that there are many rich and interesting closed loop flow control
problems in the Energy and Aerospace sector and beyond. Reducing unsteady
loading on wind turbines with large wind farms for example is an important
potential application for closed loop flow control. With the world-wide explo-
sion of Unmanned Ariel Systems this would seem to be an especially important
area due to the need for advanced intelligent platforms that can operate safely
in complex and uncertain environments (gusts and other extreme weather events,
degraded visual environments and etc.).

Authors: You have also pioneered closed-loop turbulence control in real-world
experiments. You have decided to perform a model-free control and did not use
your reduced-order models for control design. Why?

Prof. Glauser: This has not been entirely the case. The closed-loop flow control
work on turrets for Aero-optics applications incorporated models (joint work with
Hal Carlson, see for example Wallace et al. 2012 [274]) and conceptually the early
ActiveWing work with Lumley and Leibovich had modeling at its core. Frankly,
it is just not always possible to have a full team to handle the challenges asso-
ciated with bringing in the models due to funding constraints. In addition, the
complex experiments we run in our lab are very challenging and it is generally
not feasible to have a Ph.D. student do both the modeling and experiments and
have them graduate in a reasonable time frame. With the Aero-optics work where
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modeling was incorporated we were fortunate enough to have a strong team across
the board. In addition, the experiments we have been doing in jets are very high
Reynolds number and hence the flows themselves are very high dimensional so
model development is more difficult than for the lower dimensional separation
flow control problems we have performed. The bottom line, the flows examined
and availability (or lack of) of a complete team have played the key roles in the
level of modeling that we have been able to successfully incorporate.

Authors: Yet, the literature contains myriad of studies on model-based flow sta-
bilization in numerical simulations. What is the difference between experimental
and numerical control?

Prof. Glauser: This is partially answered in my response to the question above.
Typically many of the numerical simulation-based flow control studies have been
at lower Reynolds number with relatively simple boundary conditions. Thank-
fully the simulation tools are improving and we are starting to reach more realis-
tic Reynolds numbers with LES. The experimental tools are improving as well,
including powerful Time Resolved PIV tools. The best approach, if possible is
to work the problem from both sides, using the high spatial resolution of simu-
lations to provide key guidance to experiments. This can include, for example,
simulation-guided placement of sensors and actuators along with key time and
spatial scales at which to drive the flow to achieve the desired control objectives.
Simulation derived low-dimensional models, even if somewhat limited, can be
used, at least as a starting point, or perhaps fused with experimentally derived
models, to provide the model-based control.

Authors: Where do you see the range of applicability of model-based control
which has motivated this chapter?

Prof. Glauser: In principle, model-based control can and should, if possible, be
used across the range of applications experienced in the energy and aerospace
sector and beyond.

Authors: You have been enthusiastically supporting computer science methods
for years. Can you give us an idea about evolving machine learning applications
in turbulence control in the coming decade?

Prof. Glauser: It is my view that machine learning methods must be brought to
bear on the difficult nonlinear stochastic problem we are trying to control if we are
going to make real progress. However, I view machine learning as a complement
to our Navier–Stokes based tools and not an either-or scenario. All of it should be
thought of and used as “information” to help solve the nonlinear control problems
we are faced with.



120 5 Taming Nonlinear Dynamics with MLC

Authors: Which fluid dynamics expertise is not likely to be replaced by machine
learning in the coming decade?

Prof. Glauser: We will continue to need theorists, experimentalists and computa-
tionalists, all who, however, in my view, will need to have a working knowledge
of the latest math and computer science tools for both understanding and con-
trolling high dimensional non-linear time dependent stochastic systems such as
turbulence.

Authors: We look forward to your next breakthroughs in experimental turbulence
control and thank you for this interview!



Chapter 6
Taming Real World Flow Control
Experiments with MLC

An approximate answer to the right problem is worth a good
deal more than an exact answer to an approximate problem.

John Tukey

In Chap. 2, MLC was introduced as a generic method to identify optimal control
laws for arbitrary dynamics. In Chaps. 4 and 5, MLC has been applied to the control
of low-dimensional dynamical systems. In these examples, we have shown (1) that
it is comparable to optimal linear control design for linear dynamics, (2) that it
outperforms linear control methods in the case of a weak nonlinearity, and (3) that
it can even identify the enabling strongly nonlinear actuation mechanism in the case
that the linear dynamics are uncontrollable.

In this chapter, we describe and exemplify the application of MLC to real-world
turbulence control experiments. These come with the additional challenges of high-
dimensional dynamics, long time delays, high-frequency noise, low-frequency drifts
and, last but not least, with the non-trivial implementation of the algorithm in the
experimental hardware. In experiments, MLC is executed in the same way as for the
dynamical system plants in Chaps. 4 and 5:

1. MLC provides a generation of control laws to be evaluated by the plant.
2. The plant is used to evaluate and grade these individuals with respect to the given

cost function.
3. MLC evolves the population.
4. The process stops when a pre-determined criterion is met.
5. After this learning phase, the best control law can be used.

The only difference between a simulation and an experiment is the need to interrogate
an experimental plant. This is a technical challenge but not a conceptual point of
departure from MLC. Running MLC on an experiment using an existing code is a
matter of a few days to a week of work, if the experimental hardware and software
is ready for closed-loop control.

We choose three configurations: a laminar flow over a backward-facing step
in a water tunnel (Sect. 6.1), separating turbulent boundary layers in wind tunnels
© Springer International Publishing Switzerland 2017
T. Duriez et al., Machine Learning Control – Taming Nonlinear
Dynamics and Turbulence, Fluid Mechanics and Its Applications 116,
DOI 10.1007/978-3-319-40624-4_6
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(Sect. 6.2), and a turbulent mixing layer (Sect. 6.3). These examples encompass key
phenomena encountered in most flow control problems: boundary layers, separation,
mixing layers and a recirculation zone. Different kind of sensors, actuators and time
scales are used and illustrate the versatility of MLC. Section 6.4 highlights the limi-
tations of model-based linear control for the turbulent mixing layer. In Sect. 6.5, we
focus on implementation issues with respect to software and hardware. Section 6.6
suggests reading on a spectrum of flow control aspects. Our interview (Sect. 6.7)
addresses past and future developments in experimental closed-loop turbulence con-
trol with Professor Williams, a pioneer and leading scholar of this field.

6.1 Separation Control Over a Backward-Facing Step

The first example is the control of the recirculation zone behind a backward-facing
step in a water tunnel. This experiment has been performed by Nicolas Gautier and
Jean-Luc Aider in the PMMH laboratory at ESPCI, Paris. This first application of
MLC in separation control is described in detail in [111].

6.1.1 Flow Over a Backward-Facing Step

The flow over a backward-facing step is an important benchmark configuration in
fluid mechanics. From a practical perspective, this flow represents cold mixing in
a simplified combustor configuration. Increases in cold mixing, i.e., smaller recir-
culation zones, indicate better combustion in corresponding reacting flow. From a
more academic perspective, the flow features an incoming boundary layer, which
undergoes a geometrically forced separation at the edge of the step [9, 22, 141].
Excluding creeping flow, the fluid particles are unable to follow the 90° turn at the
step and separate. Thus, a mixing layer is formed between the recirculation zone
and the outer flow. As is typical for a mixing layer, a Kelvin–Helmholtz instability
triggers vortex shedding. This advective mixing increases the width of the vorticity
region downstream and determines the position of the reattachment point. This point
defines the length of the recirculation zone, Lrec. A literature survey indicates that
acting on the shear layer at the most amplified frequency contributes to the build-up
of eddies, enhances mixing and, at the end, reduces the length of the recirculation
zone [64, 68, 112, 130].

The described separation phenomena can be witnessed in many applications with
sharp corners: flows over mountains, cars, buildings, mixing elements in microflu-
idics, just to name a few. This separation affects the lift and drag of the obstacle, the
resulting noise level or the mixing.

The actuation of the experiment is set up so that there is no direct access to the
shear-layer oscillation at the high-receptivity point, the corner. For a sensor signal,
MLC is given the extent of the recirculation zone defined as the area with backward
flow. This sensor is blind to the phase of the Kelvin–Helmholtz vortex shedding.
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The interest in this choice of sensor is twofold. First, MLC must now discover the
shedding frequency indirectly or else MLC has to find another mechanism to control
the flow. Second, from an engineering point of view, the recirculation area is much
easier to infer than the state of the shear layer. For instance, optical monitoring of
seeding or combustion processes can be used instead of particle image or hot-wire
velocimetry. This is particularly true for hot reacting flow which rules out most
velocity and pressure measurements but which may be optically assessed.

6.1.2 Experimental Setup at PMMH

The PMMH water tunnel (Fig. 6.1a) operates a gravity driven flow with velocities
up to 22 m/s. Its test section is L = 0.8 m long, l = 15 cm wide and Hsection =
20 cm high (before the step). The step height is hstep = 1.5 cm, as depicted in

Flow conditioner

Test section

(a)

Jet RT PIV sensor

Sa(t)

(b)

Fig. 6.1 (a) Photograph of the PMMH experiment. (b) Experimental configuration. A slotted jet
is situated just upstream of the separation and performs blowing or suction in the boundary layer. A
laser sheet is placed in the symmetry plane for real-time PIV and to determine the backward-flow
region
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Fig. 6.1b. The operating Reynolds number for the experiment results presented here
is Re = U∞ × hstep/ν = 1350, where ν is the kinematic viscosity of water. At
this Reynolds number, the flow is well separated, creating a shear layer between
the high-speed stream and the low-speed recirculation zone extending from the step
to the reattachment point. Furthermore, at this Reynolds number, large vortices are
visible in the mixing layer.

The control goal is to reduce the size of the recirculation zone. The actuation is
achieved by blowing or sucking in a nominally two-dimensional slot upstream of
the step, which is oriented at 45° with respect to the streamwise and wallnormal
directions. By regulating the pressure in the reservoir of the slot, the exit velocity
of the slot can be changed (positive for a jet, negative in case of suction). The exit
velocity is taken as actuation command b.

The recirculation size is monitored by a Real-Time (RT) Particle Image
Velocimetry (PIV) system which determines the flow fields at a 42 Hz frequency.
This sampling frequency is over one order of magnitude larger than the characteristic
Kelvin–Helmholtz frequency of around 1 Hz. However, the PIV system would be too
slow for the following wind-tunnel experiments with frequencies around 10–100 Hz.
There are many possibilities to estimate the size of a recirculation zone. We choose a
simple quantity, namely the area in which instantaneous streamwise velocity is neg-
ative. The sensor signal s(t) is defined as the normalized instantaneous recirculation
zone,

s(t) = Sa(t)

Sa,u
, (6.1)

where

Sa(t) =
∫

H(−u(x, y, t))dxdy,

Sa,u = 〈Sa(t)〉T , without actuation.

Here, u is the streamwise velocity component, H the Heaviside function and 〈·〉T a
time-averaged value of its argument over period T . Note that Sa,u is the time-averaged
recirculation area for the uncontrolled flow. The chosen sensor is not sensitive to the
shear-layer vortices for the reasons mentioned above.

The goal function J reads:

J = 〈s〉T + γ 〈|b|〉2
T , (6.2)

where γ is a penalization coefficient for the actuation b. This parameter sets the
admissible trade-off between realizing the control objective (reducing the recircu-
lation) and the cost of the actuation. A low value of γ will favor performance over
economy and a high value gives preference to economy over performance.
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Table 6.1 MLC parameters
used for the control of the
backward-facing step flow

Parameter Value

Ni 500

Pr 0.1

Pm 0.20

Pc 0.70

Np 7

Ne 1

Node functions +,−,×, /, exp, log, tanh

Ideally, the actuation power investment should be measured against the achieved
power savings. One example is aerodynamic drag reduction of a car in which the
cost function comprises the saving in propulsion power minus the invested actuation
power, i.e., the net energy savings. In the backward-facing step, mixing enhancement
has no direct energetic benefit and we resort to an order-of-magnitude argument for
choosing γ . Departure point is an optimal periodic forcing which minimizes the
recirculation zone. In particular, the penalization term of this periodic forcing is set
equal to the normalized size of the recirculation zone, i.e., unity. This arguably avoids
the case where the actuation cost is under- or over-emphasized and leads to a value
of γ = 3/2. The parameters used to apply MLC are listed in the Table 6.1.

Advanced material 6.1 Activated options for experimental applications.
Contrary to previous implementations of OpenMLC in this book, there are the following
changes for experiments:

(a) All individuals of a new generation are evaluated, even if they have already been evaluated
in previous generations. The cost function of an individual is the average value over all
generations.

(b) The 5 best individuals of the final generation are evaluated 5 times. The cost function is,
now, the average value from the final generation.

(c) Control laws that are dismissed as unpromising in the first generation (e.g., valves closed
or open more than 90 % of the time) are replaced until all individuals of the first generation
are considered as legitimate candidates.

The options (a) and (b) are extremely important, for two reasons: (1) The evaluation time
T = 10 s is made small in order to have the fastest evaluation time for a generation. Having
more evaluation time means also better statistical values for the individuals that keep appearing.
(2) This rule prevents inefficient individuals that have obtained an accidentally good evaluation
to stay in the top of the ranking and contaminate the next generation. Option (c) ensures that
the first generation contains a large spectrum of promising control laws.
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Fig. 6.2 Sensor and control command for the control of the PMMH backward-facing step flow by
MLC (a) and best periodic forcing (b)
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Table 6.2 Cost function of MLC, JM LC and open loop JO L at different Reynolds numbers

Reh JO L JM LC

900 0.75 0.33

1350 0.42 0.42

1800 0.76 0.59

6.1.3 Results

After 12 generations, MLC returned the best control law. Its behavior is illustrated in
Fig. 6.2a. When the control starts, the sensor value s goes from an average of 1 (by
definition) to an average of 0.28, which corresponds to more than 70 % reduction.
The other curve presented in the figure illustrates the control command providing
a visual estimate of the actuation cost of the control law. Though it appears that
most of the time the control command is set at b = 0.5, this individual has a cost
of JM LC = 0.419 while the best open-loop command, a periodic command at 1 Hz
(corresponding to a Strouhal number of 0.2, displayed in Fig. 6.2b) has a cost of
JO L = 0.423 as defined by Eq. (6.2).

These comparable cost function values show that MLC has been able to find
a control law which is as good as the best periodic forcing. A spectral analysis
of the control command and the sensor signal under optimal MLC-based forcing
[113] shows that the frequency which is most amplified by the shear layer is neither
noticeable in the sensor signal nor exploited in the actuation command. The study
suggests that MLC has found a novel way to act directly on the recirculation bubble
with frequencies on the order of one tenth of the Kelvin–Helmoltz instability. This
is compatible with the so-called flapping frequency of the bubble [254].

Furthermore, the resulting control law is closed-loop by construction. Thus, it
should add intrinsic robustness to changing flow conditions since the control com-
mand is decided by flow events and not by a predetermined signal. Both MLC and
optimal periodic forcing have been tested under off-design conditions, using the same
cost function defined by Eq. (6.2). The results are displayed in Table 6.2. Unsurpris-
ingly, the periodic forcing performs poorly on off-design conditions. In comparison,
the MLC law performs better (in terms of minimizing the cost J ) at lower and higher
Reynolds numbers that were not included in the learning process.

This constitutes a key highlight of the experiment: MLC has found a new unex-
pected actuation mechanism which is more robust against changing operating con-
ditions than the optimal periodic forcing. Intriguingly, closed-loop control has also
outperformed periodic forcing in experiments with simple phasor control. Examples
are mixing enhancement after a backward-facing step [209] and drag reduction of a
d-shaped cylinder [210].
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6.2 Separation Control of Turbulent Boundary Layers

In the second example, we also reduce a recirculation zone by closed-loop actuation.
Yet, the geometry is a smooth ramp in which the separation point is not geomet-
rically prescribed but physically controlled. In fact, MLC has been applied on two
geometrically similar sister experiments in the Laboratoire de Mécanique de Lille,
France, with Cécric Raibaudo, Christophe Cuvier and Michel Stanislas and in the
Laboratoire PRISME from Orleans, France, with Antoine Debien, Nicolas Mazellier
and Azeddine Kourta. Both experiments feature a turbulent boundary layer which
separates under the influence of an identical descending ramp. Both experiments use
vortex generators (though slightly different in geometry) as actuators and hot-films
as sensors. The main difference between both experiments are (1) the Reynolds num-
ber, with a factor of 10 difference between experiments, and (2) the use of different
cost functions.

6.2.1 Separating Boundary Layers

Every obstacle in ambient high-speed flow will generate a boundary layer on its
surface. By definition, the boundary layer is a large gradient zone of the velocity
between the no-slip condition at the wall and the outer potential flow. The force
on the body is strongly dependent on the separation line which in turn depends on
the state of the boundary layer. Hence, boundary layer separation is pivotal for the
control of aerodynamic forces, like drag reduction behind a bluff body or lift increase
of an airfoil. Flow separation gives rise to a shear layer, also called a mixing layer,
between the slow recirculation zone and the fast outer stream.

This shear layer is prone to a Kelvin–Helmholtz instability, which generates large-
scale spanwise vortices [191, 262]. Near the point of separation, the corresponding
shedding frequency is characterized by a Strouhal number StΘ = 0.012 based on the
boundary-layer momentum thickness Θ before separation [128, 281]. The vortices
of the shear layer shed with a Strouhal number StLsep = 0.6 − 0.8 where Lsep is the
separation length [62, 75, 182].

The shear layer separates the oncoming flow from the recirculation bubble extend-
ing from the separation line to the reattachment line. The reattachment point is deter-
mined by the efficiency of mixing between the high-speed oncoming flow and the
low-speed recirculation bubble. The recirculation bubble is typically associated with
low pressure region which increases the drag of the body. Large recirculation regions
also reduce the lift force on wings.

Flow control can mainly target two mechanisms to manipulate this flow: (1)
change the kinetic energy level of the boundary layer to prevent/promote separation,
and (2) change the mixing properties of the separated shear layer to prevent/promote
reattachment. The first mechanism is achieved by blowing/sucking the boundary
layer or by using vortex generators. The second mechanism is achieved by manipulat-
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ing the mixing layer. For instance, introducing perturbations at a sensitive frequency
may excite vortex shedding which promotes an earlier reattachment. The use of
unsteady vortex generators (UVG) enables the exploitation of both mechanisms: the
streamwise vortices re-distribute the kinetic energy in the separating boundary layer,
while the unsteadiness promotes vortex formations in separated shear layer. These
types of actuators have been used extensively for the control of boundary layers. The
optimal parameters for control such as the geometry, position and frequencies are
still widely discussed [8, 120, 121, 123, 173, 244].

6.2.2 Experimental Setups at LML and PRISME

The experiments have been carried out in the Malavard closed-loop wind tunnel at the
PRISME laboratory [79] and the closed-loop LML wall-turbulence wind tunnel [74].
The AVERT profile used in both experiments is the descending ramp as detailed
in [74] for the LML wind tunnel. It features a sharp edge to force the position of the
separation line (see Fig. 6.3). The initial slant angle of the ramp is 25°, and can be
characterized by its height hramp and length �. The Malavard wind tunnel has a 2 m
wide and 5 m long cross section and the height and length of the ramp are h = 100 mm
and � = 470 mm, respectively. With a free-stream velocity of U∞ = 20 m/s, the
Reynolds number Reh = U∞hramp/ν is around 1.3 × 105, where ν is the kinematic
viscosity of air. In the LML wind tunnel, the Reynolds number is ten times smaller
due to lower velocities and smaller geometry.

For control purposes, unsteady vortex generators (UVG) have been implemented
one boundary layer thickness upstream of the sharp edge ramp (see Fig. 6.3). Their
design, location and orientation have been chosen based on the results from [73,
121, 248]. The UVG are set up so that the vortices are co-rotating in the LML wind
tunnel, and counter-rotating in the PRISME wind tunnel. The jet velocity ratio is
Vjet/U∞ = 3. The jets are made unsteady by the use of identical electro-valves
which can operate in an on/off fashion up to 300 Hz.

In both experiments, the friction downstream of the separation line is monitored by
hot-films (Fig. 6.3). Additionally, unsteady pressure taps are available in the PRISME
experiments for the computation of the cost-matching function. In both cases, PIV is
used as a post-processing tool to assess the effect of the control on the flow. Unlike
the water-tunnel experiment, PIV can neither be used in real-time nor in the learning
loop. The feedback sensors si used for the MLC control law are based on the hot-film
signals:

si = hi − hi,u

hi,max − hi,u
with i = A, B, (6.3)

where hi is the raw voltage output of sensor i , hi,u is the average voltage for the
uncontrolled case (corresponding to a separated flow and low friction) and hi,max
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(a)
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Fig. 6.3 (a) Photograph of the test section of the LML wind tunnel. (b) Experimental configuration
of the separating boundary layer in the PRISME wind tunnel. The jets are placed to generate counter-
rotating stream-wise vortices. Hot-film sensors are placed after the separation line and static pressure
sensors are located in the symmetry plane

is the average voltage for the most effective constant blowing leading to maximal
friction.

The control law is subject to a cost function promoting a reduced recirculation
zone and penalizing blowing:

J = JHF + γpstat Jpstat + γact Jact, (6.4)

with JHF being an evaluation of the friction recorded from the hot-films, Jpstat an
evaluation based on the static pressure distribution and Jact an evaluation of the
actuation cost. γpstat = 1/200 and γact = 0.6 are chosen as penalization coefficients.
The evaluation based on the friction is defined as:
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JHF = 1

NHF

NHF∑

i=1

[1 − tanh (〈si 〉T )] , (6.5)

where NHF = 2 is the number of hot-film sensors. The value of JHF is 1 when no
effect is recorded and approaches 0 as the friction increases. The evaluation based
on the static pressure is defined as:

Jpstat = 1

0.1 + ∑14
i=1 〈(p(xi , t)〉T − 〈

pu(xi , t))2
〉
T

xmax−xi
xmax−xmin

, (6.6)

with xi being the position of the i th pressure tap after the edge, xmin the position of the
pressure tap closest to the edge, xmax the furthest downstream pressure tap, p(xi , t)
the static pressure recorded at position xi and pu(xi , t) the static pressure recorded
at position xi in the uncontrolled case. 〈·〉T is the average over the evaluation time T .
Jpstat is equal to 10 when controlled and uncontrolled pressure distributions coincide
and approaches zero when they significantly deviate from each other, with a weight
which increases linearly towards the separation point. The LML experiment has no
pressure taps and this term is not taken into account.

The evaluation of the actuation cost is defined by:

Jact =
{〈

Q
Qu

〉

T
at PRISME,

〈
b2

〉
T at LML,

(6.7)

where Q is the flow-rate and Qu the flow-rate under constant blowing. In the LML
experiment the flow rate could not be integrated in the learning loop and the control
command was used instead. In both cases, Jact is equal to 1 for constant blowing and
vanishes when no actuation is recorded. The parameters of the MLC algorithm are
summarized in Table 6.3.

Table 6.3 MLC parameters used for the control of the PRISME and LML separating boundary
layer

Parameter Value (PRISME) Value (LML)

γpstat 1/200 0

γact 0.6 2

Ni 100 500

Pr 0.1 0.1

Pm 0.2 0.25

Pc 0.7 0.65

Np 7 7

Ne 1 1

Node functions +,−,×, /, exp, log, tanh
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6.2.3 Results

Both experiments led to successful separation mitigation of the boundary layer such
as displayed in Fig. 6.4. In the case of the LML experiment, the best open-loop control
reference is a constant blowing of the UVG at Vjet/U∞ = 3 leading to JO L = 3.
MLC achieves a control with similar performance but at a reduced actuation cost
leading to JM LC = 2.1 (Fig. 6.5). In this case, γact directly selects the operating
point of the system as the dominating mechanism seems to be strongly linked to the
kinetic energy injection in the boundary layer. The mechanism can be summarized
as follows: the more one blows, the more the boundary layer attaches. Vanishing
penalization leads to constant blowing while high penalization leads to the unforced
state.

(a)

(b)

Fig. 6.4 Cartographies of back-flow coefficientχ in the LML experiment. This coefficient is defined
in analogy of the intermittency factor as the average percentage of the occurrence of a negative
streamwise velocity at the considered point [250]. (a) Uncontrolled flow. (b) MLC modified flow.
The recirculation zone has been drastically reduced. For both cases the iso-line at χ = 50 % has
been traced
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Fig. 6.5 Time series of sensor A (a–c) and low-pass filtered control signal (d–f) for uncontrolled
(a, d), open-loop constant blowing control (b, e) and MLC control (c, f) in the LML experiment.
The level of friction obtained appears to be proportional to the amount of kinetic energy injection

This dominance of the kinetic energy injection has also been demonstrated in the
LML experiment [80]. In that case, the pressure distribution obtained in controlled
cases is compared to one of the baseline flow in Fig. 6.6a. Both constant blowing and
MLC schemes lead to a reduction of the mean recirculation region since the recov-
ery region associated with the pressure plateau is shifted upstream. Noticeable is the
acceleration of the flow induced by the UVGs upstream of the sharp edge location
(x/hramp = 0) as emphasized by the strong decrease in pressure. However, pressure
distributions computed for the best open-loop actuation and MLC almost coincide.
This implies that the efficiency of both control approaches are approximately equiv-
alent. This is confirmed by the measurement of the separation length Lsep from the
PIV dataset which is reduced by about 40 % when control is applied (see Table 6.4).
Nevertheless, the actuation cost to achieve the same recirculation zone reduction is
significantly lower (≈ 20%) for MLC as evidenced by the momentum coefficient

cμ = Sj dcV 2
j

1/2SrefU 2∞
,

where Sj represents the cross section of the jets, dc the duty cycle and Sref the surface
of the ramp (defined by the flow exposed surface of the descending part of the ramp)
reported in Table 6.4.
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Fig. 6.6 PRISME experiment: (a) Pressure distribution along the ramp. (b) Frequency distribution
of the blowing

Table 6.4 Cost function values, separation and actuation properties for the natural, best open-loop
and MLC cases in the PRISME separating boundary layer experiment

Case Natural Open-loop MLC

J 50.4 0.291 0.32

Lsep/hramp 5.4 3.14 3.16

cμ (×10−4) – 16.51 13.66
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Intriguingly, the reference open-loop control and MLC are distinctly different in
terms of the frequency distribution of the actuation command. The frequency distrib-
ution is computed from a zero-crossing algorithm applied to the mass-flow controller
signal (see Fig. 6.6b). Unlike open-loop periodic forcing for which the blowing fre-
quency is fixed at 30 Hz, the frequency distribution of the MLC is broadband. More
surprisingly, the frequencies of MLC are significantly larger than for the best peri-
odic forcing. Thus, MLC and periodic forcing yield similar separation mitigation by
significantly different underlying actuation mechanisms. A more detailed study of
the flow physics is reported in [80].

6.3 Control of Mixing Layer Growth

We finally present a feedback control of a turbulent mixing layer built and operated
in the ANR Chair of Excellence ‘TUrbulence COntrol using Reduced-Order Models
(TUCOROM)’ (ANR-10-CHEX-0015) at Institute PPRIME, France. This experi-
ment comprises all feedback control challenges described in Chap. 1: The complex
vortex dynamics between actuation and sensing leads to high-dimensional dynamics,
strong nonlinearity and large time delays. The goal of this experiment is to optimize
the mixing between both sides of the shear layer. To date, this is arguably the most
challenging implementation of MLC in an experiment.

6.3.1 Mixing Layer Flows

Mixing layers or, equivalently, shear layers, arise when two streams of flow at differ-
ent velocities interact. Such mixing layers can be observed in almost every flow. The
recirculation zone of bluff-body wakes is bounded by shear layers. The near-field
dynamics of a jet is determined by surrounding mixing layers. Any separation phe-
nomenon, e.g., in a diffuser or an airfoil, leads to mixing layers. The convectively
unstable dynamics of these flows is particularly rich, as the streamwise evolution
is a noise amplifier of upstream perturbations with large frequency bandwidth. The
Kelvin–Helmhotz instability leads to large-scale vortex formation in laminar and
turbulent mixing layers [134]. These vortices merge in the streamwise direction to
form larger and larger structures which decay in a turbulence cascade to increasingly
small vortices. Thus, the mixing layer leads inevitably to high-dimensional, multi-
scale vortex dynamics. Already by phenomenology it is clear that the possibility of
low-dimensional or linear models are very limited as will be corroborated in Sect. 6.4.

http://dx.doi.org/10.1007/978-3-319-40624-4_1
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Nonetheless, simple feedback flow control strategies have been successfully
applied to mixing layers [210]. From early periodic forcing studies [134], it is
observed that actuating at the frequency of the main structures reinforces said struc-
tures and invigorates the mixing, while actuation at much higher frequencies inter-
feres with the production of large structures and mitigates the width of the shear
layer.

6.3.2 Experimental Setup of the TUCOROMWind Tunnel

The TUCOROM experiment has a double turbine wind tunnel aimed at creating a
turbulent mixing layer. The wind tunnel generates two flows that can be set at different
velocities and which are separated by a plate. The optically accessible test section has
a cross section of 1 × 1 m2 and a length of 3 m (Fig. 6.7). The separation plate ends
with a triangular profile with a tip 3 mm thick which includes 96 holes for actuation
jets blowing in the streamwise direction. The jets can be operated independently. A
vertical rake of 24 hot wires, operated at 20 kHz, serves as a sensor array and can
be placed at any position downstream in the test-section. The hot wires, vertically
separated by a 4 mm offset, map the mixing layer profile. The closed-loop control
is implemented on a Concurrent® RT system which combines the use of Simulink®

loop design and Fortran home-made adaptor functions to encode sensor acquisition,
compute control decisions and command actuation signals up to a maximum rate of
10 kHz.

The unforced and forced mixing layers are described in detail in [206, 207].
For the results presented here, the wind tunnel is operated with a velocity ratio of
U1/U2 = 3.6, and the Reynolds numbers based on the initial mixing layer thickness
is 500 (laminar) for the learning process and can be set to 2000 (turbulent) to test
off-design conditions. The hot-wire rake is placed at x = 500 mm downstream from
the separation plate. The sensors are based on the fluctuations of the raw hot-wires
sensors:

si (t) = hi (t) − 〈hi (t)〉Trms
, (6.8)

where hi (t) is the raw velocity measured at hot-wire number i and Trms = 1 s is the
time interval used in order to compute the moving average of the velocity signal.

The goal of the control is to increase mixing. In this chapter, we chose the width
of the shear layer profile as a quantity to maximize. This width is approximated by
the ratio of the integral of the average fluctuation energy profile over the maximum
of this profile. Thus, the cost function reads:

J = 1/W with W =
∑24

i=1

〈
s2(t)

〉
T

maxi∈[1,24]
(〈

s2
i (t)

〉
T

) , (6.9)
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Fig. 6.7 TUCOROM mixing layer demonstrator: (a) Photo of the test section. (b) Experimental
setup of the mixing layer. The hot-wire rake is placed at 500 mm downstream of separating plate to
capture the structures in the shear layer. The spacing of the hot-wire probe is Δy = 8 mm



138 6 Taming Real World Flow Control Experiments with MLC

Table 6.5 MLC parameters
used for the control of the
TUCOROM mixing layer

Parameter Value

Ni 1000 (first generation)

100 (other generations)

Pr 0.1

Pm 0.25

Pc 0.65

Np 7

Ne 1

Node functions +,−,×, /, sin, cos, exp, log, tanh

where T = 10 s is the evaluation time for a control law. This time corresponds to
approximately 950 Kelvin–Helmoltz periods of the initial shear layer.

The 96 actuators are operated simultaneously as a single input, although they
could have been actuated independently. Studies with periodic forcing of different
actuator configurations have indicated that this synchronous operation is best for
enhancing the mixing layer width. The control law should only return a binary value
(0 or 1) as the valves commanding the jets can only be operated in an on/off mode.
The maximum jet velocity is kept constant by the pressure tank. Details on the imple-
mentation of the control law by MLC are given in the next section. The parameters
used for the operation of MLC in this experiment are detailed in Table 6.5.

The output of the expression trees can be an arbitrary function of the sensors si (t),
which could take any value in R. In our case, the valves commanding the actuation
jets can only be opened or closed. Hence, the output of the trees is compared to zero,
and thus b(t) = 0 if the output of the tree is negative, and b(t) = 1 otherwise. This
operation is achieved inside the Fortran part of the RT loop, after interpretation of the
expression trees, and before sending back the actuation command to the Labview®

framework (see Sect. 6.5.4).
Evaluating an individual costs 3 s transient time and T = 10 s evaluation time.

Thus the first generation with 1000 individuals requires around 3.5 h and subsequent
generations require around 20 min each. This represents around 8–10 hours for a
typical run with 10–15 generations. The reader is strongly advised to implement
health monitoring of the experiment and simple automatic reset procedures.

6.3.3 Results

Though the experiment was run until the 15th generation, the best control law was
already obtained after the 8th generation. The effect of the MLC-controlled flow
is shown in Fig. 6.8—together with the unactuated flow and the best periodically
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Fig. 6.8 Pseudo-visualizations of the TUCOROM experimental mixing layer demonstrator [206]
for three cases: natural baseline (top, width W = 100 %), the best periodic-forcing benchmark
(middle, width W = 154 %), and MLC closed-loop control (bottom, width W = 170 %). The
velocity fluctuations recorded by 24 hot-wires probes (see Fig. 6.7) are shown as contour-plot over
the time t (abscissa) and the sensor position y (ordinate). The black stripes above the controlled
cases indicate when the actuator is active (taking into account the convective time). The average
actuation frequency achieved by the MLC control is comparable to the periodic-forcing benchmark

forced flow. The periodic-forcing benchmark has been obtained through an extensive
parametric study of harmonic forcing with many frequencies ranging from 1 to
500 Hz and various duty cycles. A periodic forcing at frequency of 9 Hz and 50 %
duty cycle was found to yield the largest increase in mixing-layer width W of a 54 %.
In terms of performance, the MLC controlled flows exhibits a 70 % increase of the
shear-layer width, which outperforms the periodic-forcing benchmark by 16 % with
respect to this width or 30 % with respect to increase of the width by periodic forcing.
Looking back at Fig. 6.8, the similarity between the periodic forcing and the effect of
the MLC law is evident. A spectral analysis of the MLC control command shows that
MLC also operates around 9 Hz. Both actuations amplify the large-scale eddies at the
downstream measurement position. The difference between both optimal periodic
forcing and MLC is fourfold:

1. MLC is a sensor-based closed-loop control and does not explicitly depend on
time. In other words, MLC schedules actuation based on flow events and not on
a predefined ‘clockwork’.

2. The shear-layer width associated with MLC actuation is significantly larger.

Advanced material 6.2 Varying the population size to minimize the time of the runs.
The MLC of this experiment follows the experimental changes of advanced material 6.1. In
addition, the first generation contains 1000 individuals while the following ones are restricted
to 100 individuals. The large first generation (with removal of uninteresting individuals)
ensures that the search space contains effective control laws. The significantly reduced size
of further generations reduces the time investment in an inefficient exploration.
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3. The effective duty cycle exhibited by MLC is much smaller, leading to a 48 %
decrease in the actuation cost. Intriguingly, this benefit arises although actuation
was not penalized in the cost function (6.9).

4. The actuation effect of MLC dramatically outperforms periodic forcing for chang-
ing operating conditions, such as changing the maximum stream velocity. The
situation is comparable to the PMMH experiment in Sect. 6.1 or drag reduction
of the D-shaped body with phasor control [210]-

Feeding back sensor signals is particular important to optimize the control law.
The periodic forcing acts like a clockwork on the noise amplifier and performs well as
long as no perturbations are modifying the underlying base flow. On the other hand,
MLC triggers the actuation based on what is sensed. MLC adapts with a time delay
of the order of 2 × x/ (U1 + U2) which is comparable to the period of maximum
excitation. Thus, MLC realizes a phasor-type control as in [210] which is more ‘in
phase’ with the flow physics and more robust to changing operating conditions.

6.4 Alternative Model-Based Control Approaches

To motivate the use of machine learning control using genetic programming, we
consider the inability of linear system identification to capture the strongly nonlinear
dynamics in the TUCOROM mixing layer experiment from Sect. 6.3. In particular,
we attempt to identify a linear input–output model from actuation to hot-wire sensors
using the ERA/OKID algorithms described in Sect. 3.5.1.

As mentioned earlier, it is often difficult to obtain clean impulse response exper-
iments, especially in turbulent fluid systems with stochastic fluctuations. Instead,
a pseudo-random actuation sequence is constructed by repeatedly turning the jets
on or off for a random interval of time. The hold time is sampled from a discrete
Poisson distribution with parameter λ = 4. This distribution is then scaled so that
the mean hold time is 0.05 s. Using pseudo-random excitation sequences for system
identification of fluid systems is inspired by [158]. The actuation sequence is shown
in Fig. 6.9 (top).

A particular pseudo-random blowing sequence is used for 300 identical exper-
imental runs, and the sensor measurements from a rake of nineteen hot wires at a
downstream location of x = 500 mm are collected and phase averaged. The resulting
phase-averaged velocity measurements are shown in Fig. 6.9 (bottom). Immediately,
coherent structures may be observed as correlations in the hot-wire signals; however,

http://dx.doi.org/10.1007/978-3-319-40624-4_6
http://dx.doi.org/10.1007/978-3-319-40624-4_3
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Fig. 6.10 The ERA/OKID models for the input–output response of each hot wire may be combined
to produce a frequency response plot. The color code indicates the corresponding hot wire and is
adopted from Fig. 6.9. The phase information (b) strongly suggests a time delay, while the magnitude
plot (a) indicates weak flow resonances

phase-averaging removes important stochastic fluctuations that account for a signif-
icant amount of the kinetic energy. Therefore, even perfect model reconstruction of
the phase-averaged velocity measurements would only account for a limited aspect
of the full nonlinear flow.

The phase-averaged measurements are then used in the ERA/OKID algorithm to
obtain input–output models for the various hot-wire signals. A frequency response
of the various models for the nineteen hot-wire signals is shown in Fig. 6.10. The
magnitude plot shows moderate flow resonance at certain frequencies, and the phase
plot captures the time delay between actuation and measurements. However, when
analyzing the model reconstruction of a particular hot wire in Fig. 6.11, it is clear
that the model error is on the same order of the signal strength. This indicates that
the phase-averaged measurements still contain strong, reproducible nonlinear flow
effects that cannot be captured by the linear models.

To summarize, linear model identification fails to capture two features of the mix-
ing layer flow field: stochastic fluctuations and coherent nonlinear phenomena. Taken
together, these effects account for a significant portion of the kinetic energy, and are
likely important for flow control efforts. However, it may still be interesting to test
the performance of robust model-based control, considering that many nonlinearities
may be considered as model uncertainty or disturbances.
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Fig. 6.11 The measured hot-wire signal u is compared with the model-reconstructed signal ur for
the 9th hot wire near the middle of the rake. Note that the error Δu is nearly as large as the original
signal

6.5 Implementation of MLC in Experiments

This section details the software and hardware implementation of the experiments
described in the previous sections. Following Chap. 2, two closed loops need to
be set up: a fast inner real-time (RT) control loop (Sect. 6.5.1) and a ‘slow’ outer
MLC learning loop. Section 6.5.1 describes the real-time control loop which extracts
information from the experiment through sensors, computes the actuation command
and passes it to the actuator. Details about the hardware and software implementation
of MLC for the PMMH, PRISME and TUCOROM experiments are provided in
Sects. 6.5.2–6.5.4, respectively.

6.5.1 Real-Time Control Loop—from Sensors to Actuators

Any experimental RT control loop consists of four elements: the plant, sensors,
actuators and a computational unit. The sensors get information about the plant.
The computational unit processes these signals and sends a control command to the

http://dx.doi.org/10.1007/978-3-319-40624-4_2
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actuators which, in turn, will act on the plant. All of these elements must be able
to operate in a frequency range of the actuation mechanism at work. Stabilizing an
unstable oscillator, for instance, typically requires a sampling rate which is signif-
icantly larger than the eigenfrequency. In fact, the Nyquist theorem would impose
the need for a sampling frequency which is at least twice that frequency and a rule
of thumb is to use a sampling frequency of at least ten times the eigenfrequency.

The RT loop constitutes a classical feedback experiment for a given controller.
The slow outer MLC loop provides new controllers for this experiment after each
cost function evaluation. This implies that the computational unit needs to be pro-
grammable, either by allowing it to read and interpret the individuals provided by
the learning loop (at every time step), or by allowing the learning loop to change its
content. Two approaches have been used to achieve this goal:

• The outer loop is able to change (and compile) the controller code on the RT-loop
computation unit at least once per generation (see Sect. 6.5.3 as an example).

• The use of an on-board control law parser: the controller implemented in the
computational unit is re-loaded every sampling cycle and could thus change even
during one evaluation period (see Sect. 6.5.4).

As the control law provided by the MLC learning loop is arbitrary, the RT loop
has to be protected against control commands that provide values outside the safe
operation range of the experiment. This means that the controller—implemented as
a parser or as an externally modified part—should be encapsulated in a framework
that can protect the actuators from operating out of safety margins.

The last aspect to be taken into account is that the experiment may evaluate
hundreds or thousands of control laws and may hence take more time than a standard
control experiment where only a single control law is tested or optimized. The time
scales for MLC experiments may range from hours in wind tunnels to days in water
tunnels. Hence, all components of the experiment should be able to operate in an
unsupervised manner at least to evaluate a few generations. This might imply the
addition of other regulation loops for temperature, calibration updates, tank refill,
to name only few examples. It is also advisable to design some telltales in order to
detect any unusual behavior of the experiment. Feedback loops have a reputation of
pointing at weak spots of experiments and this is amplified by the exploratory nature
of the MLC algorithm.

6.5.2 MLC Implementation in the PMMH Flow Over
a Backward-Facing Step

In the water tunnel, the characteristic frequency is about 1 Hz. With such a
low characteristic frequency, the controller can be implemented on any modern
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computer. The real-time loop, including the RT PIV part, is implemented in Labview®.
Thus, the Labview® project contains the real-time PIV acquisition, the command
signal to the actuator and the controller. The outer MLC loop employs OpenMLC
introduced in Sect. 2.3.

The control law is first translated from LISP to a classical symbolic expression
by OpenMLC then transmitted through file exchange on the computer hard-drive to
the Labview® project. Each time OpenMLC evaluates an individual, it writes a file
(e.g., ind.dat) containing the symbolic expression describing the control law. The
appearance of the file is detected in one of the RT-loop iterations. The file is read,
the string variable containing the expression is then updated and the file is deleted.
A parser function is then used to transform the sensor value to a control command
inside the controller block.

That control law is used during the evaluation period and at the same time the cost
function is integrated. The Labview® program then writes the cost function value
of the individual in a file (e.g., J.dat) in the exchange directory of the computer.
OpenMLC detects the presence of the file, reads and deletes it, which tells Labview®

that the transmission is complete. The next individual can then be evaluated in the
same way.

The exchange by files may sound like an unnecessary and time-consuming way
to proceed. Yet it is relatively simple, as only the read/write protocol needs to be
implemented. The file exchange requires that a parser can be implemented on the RT
loop.

6.5.3 MLC Implementation in the LML and PRISME
Experiments

In the LML and PRISME experiments, no dedicated, high-performance and highly
expensive computer with real-time capacities was available. The RT loop has instead
been implemented in an Arduino micro-controller (Fig. 6.12). In contrast to the
water-tunnel experiment in Sect. 6.5.2, a parser on the Arduino would have led to
a significant performance loss. The water-tunnel experiment at PMMH had a large
characteristic time scale of 1 s and the communication between RT and MLC loop
happened over file exchange. The time scales of wind-tunnel experiments are one to
two orders of magnitude faster and we chose a more efficient communication strat-
egy. OpenMLC has been set up so that (1) the evaluation function generates code for
the Arduino with all control laws for one generation, (2) compiles it, and (3) burns
it on the micro-controller. By abandoning the possibility of changing the individual
on the fly, the computational load achieved on the board has been reduced to a bare
minimum. This speed-up enables a control update frequency of 1 kHz without even
having to implement low-level programming on the Arduino.

The burned code contains all individuals of one generation and sends back the
cost function values. The outer loop is controlled by Matlab® code which generates

http://dx.doi.org/10.1007/978-3-319-40624-4_2
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Fig. 6.12 MLC implementation architecture in LML and PRISME boundary-layer experiments

the codes for the individuals and retrieves the cost function values in addition to
reading any other information which may be fed back by the Arduino. This code can
interrupt the experiment, realize a calibration, and re-burn and re-start the evaluation
if needed.

6.5.4 MLC Implementation in the TUCOROM Experiment

The controller is implemented on a high performance PC with 1 TeraFlop comput-
ing power (Fig. 6.13). The real-time loop is designed in Labview® and compiled
to run at the desired frequency enabled by a real-time scheduler. The reading of
the sensors, the signal processing, and the calculation of the control command is
achieved by a Fortran function whose output is then transferred inside the Labview®

designed project. The Labview® project encompasses all other commands needed to
operate the wind tunnel, from the turbine operation, pressure regulation for the jets,
calibration, temperature monitoring, and so on.

The interaction between OpenMLC and the RT loop is achieved through file
exchange as in the PMMH water-tunnel experiment (Sect. 6.5.2). This has the advan-
tage of changing the control law on the fly. Here, the loop described by the Labview®

project is in charge of monitoring the experiment and act accordingly in case of an
unexpected event, such as failing actuators or sensors.
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Fig. 6.13 MLC implementation architecture in TUCOROM mixing layer

Advanced material 6.3 LISP interpreter pseudo-code.
All LISP parsers operate in the same way and are rather easy to build, through a recursive
function: function def:
translated_string=read_my_LISP(LISP_string):
(1) Detect outer parenthesis
if no parenthesis: translated_string = LISP_string
(2) Detect spaces
operator=LISP_string(par1:space1)
argument#n=LISP_string(space#n:space#n+1)
(3) Translate arguments
tr_args#n=read_my_LISP(argument#n)
(4) Replace strings
if op is a function
translated_string=operator(argument#1,…)
if op is an operation
translated_string=argument#1 operator argument#2

6.6 Suggested Reading

(1) Modern developments in flow control, by M. Gad-el-Hak, Applied Mechanics
Reviews, 1996 [108].
This review provides an early perspective on flow control with a number of
future directions that have since been developed.
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(2) Control of turbulence, by J. L. Lumley and P. N. Blossey, Annual Review of
Fluid Mechanics, 1998 [179].
This review is among the earliest overviews summarizing efforts on modeling
for turbulence control.

(3) Feedback control of combustion oscillations, by A. P. Dowling and A. S.
Morgans, Annual Review of Fluid Mechanics, 2005 [85].
This review considers combustion control using linear control theory.

(4) Dynamics and control of high-Reynolds number flows over open cavities,
by C. W. Rowley and D. R. Williams, Annual Review of Fluid Mechanics,
2006 [232].
This review describes the control of flow over open cavities, which provides
an illuminating success story of flow control design.

(5) A linear systems approach to flow control, by J. Kim and T. R. Bewley,
Annual Review of Fluid Mechanics, 2007 [161].
This review provides a clear summary of modern techniques applying linear
control theory to fluid flow control.

(6) Control of flow over a bluff body, by H. Choi, W.-P. Jeon, and J. Kim, Annual
Review of Fluid Mechanics, 2008 [65].
This review considers the problem of controlling bluff body flows from physical
and mathematical perspectives.

(7) Optimal and robust control of fluid flows: Some theoretical and computa-
tional aspects, by T. T. Medjo, R. Temam, and M. Ziane, Applied Mechanics
Reviews, 2008 [186].
This review provides an overview of mathematical and numerical considera-
tions in modern flow control.

(8) Input-output analysis and control design applied to a linear model of spa-
tially developing flows, by S. Bagheri, J. Hoepffner, P. J. Schmid, and D. S.
Henningson, Applied Mechanics Reviews, 2009 [13].
This review explores linear model-based control of fluid systems with the
Ginzburg–Landau equation as an illuminating example.

(9) Actuators for active flow control, by L. Cattafesta, Annual Review of Fluid
Mechanics, 2011 [54].
This review considers one of the most important factors in experimental flow
control: the actuators.

(10) Adaptive and model-based control theory applied to convectively unstable
flows, by N. Fabbiane, O. Semeraro, S. Bagheri, and D. S. Henningson, Applied
Mechanics Reviews, 2014 [101].
This review provides an overview of research on active control for transition
delay with example code for the linearized Kuramoto–Sivashinsky equation.

(11) Analysis of fluid systems: stability, receptivity, sensitivity, by P. J. Schmid
and L. Brandt, Applied Mechanics Reviews, 2014 [239].
This review investigates flow analysis in terms of cost optimization.

(12) Closed-loop turbulence control: Progress and challenges, by S. L. Brunton
and B. R. Noack, Applied Mechanics Reviews, 2015 [43].
This review explores the state-of-the-art of closed-loop turbulence control and
provides and emphasis on modern methods from machine learning.
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6.7 Interview with Professor David Williams

David Williams is Professor of Mechanical and Aerospace Engineering at the Illinois
Institute of Technology, IL, USA. Since 1999 he has been the Director of the Fluid
Dynamics Research Center at IIT. In addition, Professor Williams is an active member
of the American Institute of Aeronautics and Astronautics, and is currently serving
his third term on the fluid dynamics technical committee.

Professor Williams is a leading expert on experimental closed-loop flow control,
with numerous experimental success stories on challenging flow configurations, such
as the reduction of acoustic tones in aircraft cavities or separation control over
an airfoil in flight maneuvers. He is a highly collaborative researcher and draws
researchers from around the globe to work with him in his advanced wind tunnel
facility.

Professor Williams has received numerous national and international honors
for his research accomplishments and excellence in teaching. He is Fellow of the
American Physical Society and was awarded with the prestigious Alexander von
Humboldt Fellowship and the Honeywell Advanced Technology Achievement Award.
He is also a licensed commercial pilot with more than 1000 h of flying time.

Authors: You are a leader in experimental flow control, with many successful
demonstrations of closed-loop control for aerodynamic applications. It would be
an understatement to say that there are issues that arise in experimental flow
control that are not usually present in simulations and theory. Can you discuss
key enablers in experimental flow control that have been developed in the last two
decades? Which challenges do you see as guiding foci of relevant future research?

Prof. Williams: The “key enablers” for experimental active flow control (AFC)
have come primarily from the adaptation of modern methods of closed-loop feed-
back control algorithms into experiments, and the rapid development of sensors
and digital signal processing (DSP) hardware, e.g., dSPACE and Arduino DSP’s.
This combination enables AFC to become much more than an exercise in actuator
development and open-loop control. It is now possible to adapt AFC to chang-
ing flight/flow conditions, and to interact directly with internal flow instabilities,
which leads to far more robust and effective controllers than can be achieved with
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open loop control or by changing a base flow state. With closed-loop active con-
trollers the actuator power requirements can be minimized, which is not possible
with open-loop methods.
The focus in experimental fluid dynamics is shifting from open-loop demonstra-
tions of actuator performance at steady flow conditions to closed-loop control dur-
ing unsteady flow conditions. Open-loop actuator demonstrations compete with
passive flow control devices. For example, separation control on wings will likely
continue to be done with passive vortex generators, because the active devices are
more expensive and less reliable.
Future research in experimental AFC will continue to emphasize the develop-
ment of low-dimensional models that accurately represent the flow’s response to
external disturbances and the flow’s response to actuator input, i.e., disturbance
models and plant models. These can be used to design practical and effective
feed-forward and feedback controllers that run in real-time on the digital-signal
processing hardware. Examples of active flow control systems that have suc-
cessfully employed these techniques include the reduction of unsteady loads in
gusting flows on wings and road vehicles, thermo-acoustic combustion instability
suppression, control over the reattachment length in separated flows over steps,
reduced drag on bluff bodies, reduce acoustic tone amplitudes in cavity tones, con-
trol the rotational motion of slender bodies at high angles of attack, and reduce
lift hysteresis on pitching wings.
Another important enabler in experimental flow control has been in sensor devel-
opment. MEMs-based sensor technology is reducing the cost and size, and increas-
ing the performance of pressure sensors, motion sensors with IMU’s, gyro’s, and
accelerometers. This enables distributed sensing capability, such as multiple pres-
sure sensors in a diffuser or over the surface of a wing, for better flow state estima-
tion in practical applications. Shear stress sensors continue to be developed and
applied with varying degrees of success in the laboratory, but have not developed
to practical application levels. Full-field sensing techniques, such as real-time
PIV, enable us to explore new methods of integrating experiments with numerical
simulations. Data assimilation methods combine experiments and simulations as
a way of correcting simulations.
Actuator technology is sufficiently mature for solving a large number of flow con-
trol problems, but one finds that our understanding of how the flow will respond
to an arbitrary actuator input is somewhat limited. System Identification methods
have proven to be useful for developing black-box models that are effective in
modeling flows, but they are not as reliable as models developed from first prin-
ciples.
Another challenge for all flow control investigators is to recognize that fluid
dynamic time scales introduce time delays into the system that we are trying
to control. These delays limit the achievable bandwidth of the overall system con-
trol, so actuator bandwidth is not a major issue for most flow control applications.

Authors: In your experience, what are some of the biggest gains in experimental
flow control that came about from simulations or models? In contrast, what do
you see as the key limitations of models in capturing real-world fluid phenomena?
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Prof. Williams: Most of the significant advances in flow control were the result
of collaborations between experiments, theory and simulations, so it is difficult
to attribute advances in experimental flow control as being the direct result of
simulations or models. For example, in what I consider to be the first modern flow
control experiment, Prandtl used suction to suppress separation from one side of
a cylinder, which provided evidence for the role of the boundary layer in flow
separation and became the principal motivator for the development of boundary
layer flow control. In this case theory preceded the experiment, but experimental
observations led to the theory.
In my experience the key limitations of simulations in capturing real-world are
matching Reynolds number, computing an accurate actuator input to the flow, and
matching the dimensionality of the experiment. Two-dimensional simulations of
the flow’s response to actuation often produce inaccurate results, because the
real-world actuators typically introduce three-dimensional disturbances into a
flow. It is difficult for actuators used in experiments to produce two-dimensional
disturbances.
In the case of closed-loop active flow control, models of the flow field response
to external disturbances and models for the flow field response to actuator input
are very useful for achieving effective control.

Authors: Can you comment on the role and benefits of experimental flow control
in the future as computer simulations become more powerful?

Prof. Williams: The collaboration between experiments and simulations will
become even stronger as simulations become more powerful. Fortunately the engi-
neering community has outgrown the notion from the 1990s that simulations will
make experiments obsolete. The emerging area of research known as “data assim-
ilation” seeks to capitalize on integration of large-scale, real-time, experimental
data sets with numerical simulations. Although the techniques being developed
are not specifically focused on flow control applications, it seems likely that the
approach will be useful for the entire flow control community. For example, imag-
ine real-time experimental data being used to “correct” a full-scale DNS simula-
tion of a particular flow. The DNS can provide the full-state feedback information
to a controller that would not be available from the experimental data.
Simulations done correctly provide more detailed information about a flow than
can be obtained by experiment. Experiments, on the other hand, can explore a
wider parameter space than simulations. Simulations and models often identify
instabilities that are susceptible to control. In principle, simulations (adjoint meth-
ods) can identify spatial locations where actuator placement can be most effective.

Authors: In the coming decades, where do you see the big future gains in our
everyday lives and in industry due to flow control?

Prof. Williams: The Holy Grail of flow control would be the ability to control all
scales of turbulence in shear flows, such as, in turbulent boundary layers, jets,
wakes and mixing layers. Imagine being able to ‘flip a switch’ and laminarize a
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turbulent boundary layer. Fuel savings for the aerospace industry would be enor-
mous. However, I don’t envision that capability in the near-term future, primar-
ily because we don’t have sufficient understanding of the turbulence production
mechanisms, or ways in which actuators can be used to interact with those mech-
anisms. However, pursuing the goal of turbulence control drives the development
of new technology in numerous areas. New approaches to flow modeling (e.g.,
resolvent modes), advances in sensor and actuator technology, and novel control
algorithms will lead to improved understanding of the fundamental phenomena
governing turbulence.
Linear thinking about the current trends in flow control suggests that AFC will
result in more efficient energy recovery via improved aerodynamics on aircraft
and wind turbines. Reduced drag and improved gust tolerance on commercial
aircraft can be expected. I believe that it is possible for conventional flight con-
trol surfaces to be replaced by AFC actuators, and these aircraft will fly without
vertical stabilizers and will fly with substantially larger aerodynamic efficiency,
i.e., L/D ratio. AFC will enable tailored combustion processes that will reduce
pollutants from combustion processes.

The rapid development of low cost and ever more powerful DSP’s will enable more
intelligent control of flows and systems. The application of distributed sensing
will improve state estimation. Will there be a breakthrough in our understand-
ing of turbulent flow mechanisms that enables laminarization of turbulent shear
flows? Linear extrapolation says ‘no’, but fortunately, nature does not follow linear
extrapolations.

Authors: Do you envision these being facilitated by better hardware, increasing
model fidelity, access to more complete data, or some combination thereof?

Prof. Williams: Improvements in a combination of all of the above may lead to
the better understanding that is required to control turbulent shear flows.
There is a difference between what we can do with flow control and what is of
interest to industry. For example, we know how to delay airfoil stall with various
types of leading edge actuation, such as, pulsed-pulsed blowing jets, but industry
continues to use mechanical vortex generators for stall control, even though there
is a continuous drag penalty. From industry’s perspective the complexity and
reliability issues of an AFC stall control system outweigh the benefits of reduced
drag. It is obvious that AFC techniques must buy their way onto a system by
providing greater benefits than the cost of added complexity. Sometimes those
benefits are unexpected, such as, the use of pneumatic AFC for flight control of
an aircraft. The primary function of the pneumatic actuator is to provide roll and
yaw control, which takes bleed air from the engine. At the same time a secondary
effect occurs, where the AFC increases the efficiency of the flight vehicle, so that
the range and endurance are better with AFC than without. In this case, the overall
system benefits from the application of AFC.

Authors: We thank you for sharing your insights in this interview!



Chapter 7
MLC Tactics and Strategy

Heavy is the brick of reality on the strawberry cake of our
illusions.
Gilles “Boulet” Roussel, cartoonist, Translated from his Twitter
account Bouletcorp, 10th December 2013

If the idealMLC experiment existed, this chapter would not be needed. The literature
contains many examples of control methods that fail the translation from a numer-
ical study to the corresponding experimental demonstration. MLC removes one of
the major obstacles: the discrepancy between the employed model and the physical
reality of the experiment. Nonetheless there still exist many pitfalls that lead to dis-
appointing results. Often, these results relate to the difference between the idealized
experiment and reality. Through our first applications of MLC in experiments we
have explored many pitfalls and have developed a mitigation strategy. This chapter
guides experimental control demonstrations with MLC. The advice may also apply
to numerical studies.

7.1 The Ideal Flow Control Experiment

The ideal flow control experiment—or any other control experiment—does not exist.
If it existed, it would have the following properties:

Full knowledge about the dynamics: The evolution equation da/dt = F(a,b)

and the parameters of the dynamics F, like the Reynolds or Mach number, are
exactly known. A corollary is that reproducibility is guaranteed.

Accurate measurements: The measurement equation s = G(a,b) is known with
perfect precision and the signals s(t) are accurately recorded.

Ideal cost function: The cost function J (a,b) describes the quantity which shall
be optimized and which can be measured in the experiment.
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Known noise: Any noise terms affecting the dynamics, themeasurement equation
or the cost function are accurately modeled and accounted for. A corollary is the
reproducibility of arbitrary ensemble averages.

Controllability: Any desired final state a of the system can be reached with finite
actuation in finite time. At a minimum, the achieved change of cost function due
to MLC is so impressive, that the results merit a career promotion and convince
the funding agencies to invest more money.

Infinitely powerful computer: The control law b = K(s) is computed instanta-
neously. At minimum, the actuation command is computed with predictable small
time delay.

No aging: Of course, the ideal experiment never breaks, nor suffers slowly drifting
external parameters such as atmospheric pressure and temperature, nor is effected
by opening and closing doors of the room, nor experiences any changes which are
not reflected in the dynamics F, in the measurement function G and in the cost
function J .

Infinite resources: The perfect experiment can be operated until the cost function
value is converged and until MLC is converged to the globally optimal control
law.

Arguably, the ideal flow control experiment is an instance of a direct Navier–
Stokes simulation on an infinitely powerful computer. When building aMLC control
experiment the best degree of perfection shall be reached with given resources. In the
following sections, we address different aspects that one needs to keep in mind when
preparing an MLC experiment. Some decisions can be made to prepare a perfect
experiment. And other decisions deal with imperfections of an existing experiment.
This chapter can be considered as a checklist of important aspects that need to be
taken into account in order to maximize the chances of success and the quality of the
results.

7.2 Desiderata of the Control Problem—From the
Definition to Hardware Choices

In this section, we outline desiderata of the multi-input multi-output (MIMO) control
problem. This comprises the definition of the cost function (Sect. 7.2.1), the choice of
the actuators (Sect. 7.2.2), and the choice of the sensors (Sect. 7.2.3), including a pre-
conditioning of the actuation command and sensor signals for MLC. In (Sect. 7.2.4)
we remind the reader that the search space for control laws is a design choice as
well. Many aspects are trivial. This does, however, not exclude that one or the other
aspect might be overlooked. Even the most sophisticated control problem can be
decomposed in myriad of trivialities.
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7.2.1 Cost Function

The purpose of any actuation is to change the behavior of the plant to be more desir-
able. The corresponding performance measure is generally called the cost function in
control theory and is generally a positive quantity to be minimized. A control prob-
lem may have a ‘natural’ cost function comprising the departure of the system from
the ideal state Ja and the associated cost Jb. We take the aerodynamic drag reduction
of a car by unsteady actuators as an example. The propulsion power to overcome the
drag FD at velocity U reads Ja = UFD and is ideally zero. The actuation power by
blowing can be estimated by the energy flux Jb = ρSbU 3

b /2, where ρ is the density

of the fluid, Sb is the area of the actuator slot, andU 3
b the third power of the actuator

velocity averaged over the slot area and time. The resulting cost function reads

J = FD U
︸ ︷︷ ︸

Ja

+ ρSbU 3
b︸ ︷︷ ︸

Jb

. (7.1)

Let Ju be the parasitic drag power without forcing. Then, the net energy saving
reads ΔJ = Ja + Jb − Ju and shall be maximized, or, equivalently the total energy
expenditure Ja+Jb minimized. The ratio between energy saving and actuation energy
(Ju − Ja)/Jb defines the efficiency of the actuators and should be much larger than
unity. We shall not pause to consider potential improvements on this particular cost
function.

Two common cases may obstruct the definition of a ‘natural’ cost function. First,
the cost function cannot be measured in experiments. For instance, the test section
of the wind tunnel may not have a scale and the drag force cannot be measured.
In this case, a surrogate cost function needs to be defined. A good surrogate func-
tion is expected to follow approximately—at least qualitatively—the changes of the
intended quantity for all considered control laws. In case of the car example, the base
pressure coefficient is a possible choice.

A second challenge may be the incomparableness of control goal Ja and actu-
ation cost Jb. This may, for instance, be manifested in different physical units of
Ja and Jb. The control goal may be to improve mixing as quantified by an non-
dimensional entropy and the actuation cost may be measured in Watts. In this case,
cost function decomposition in a state and actuation contribution J = Ja + Jb is even
dimensionally wrong and there is no a priori performance benefit Ja,u − Ja which
is worth Jb in actuation energy. In this case, the actuation cost is typically rescaled
with a penalization parameter γ ,

J = Ja + γ Jb. (7.2)

In the following, we assume that all quantities are non-dimensionalized and γ > 0
is a positive real number. Let us further assume that the experimentalist decides that
the performance benefit J1 = Ju − Ja is worth the actuation cost J2. In this case,
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the corresponding penalization parameter reads γ = J1/J2. The reference values
J1 and J2 might be obtained from another control experiment. For instance J1 may
be the performance benefit from the actuation cost J2 from periodic forcing. In this
case, the same choice of γ leads to a lower J -value (7.2) for MLC if the actuation
benefit Ju − Ja is larger at the same actuation cost or if the same actuation benefit is
achieved at lower actuation cost.

7.2.2 Actuators

The goal of actuation is to modify the system behavior to reduce the cost function.
This self-evident goalmaynot be achievedby the actuators in real-world experiments,
as the authors have witnessed a number of times.

The goal may be to reduce jet noise with plasma actuators at the jet nozzle exit.
But these actuators may be orders of magnitude more noisy than the jet. Then, the
best control strategy is to keep actuation off. The goal may be to reduce the drag of
a bluff body, but the blowing actuators increase drag for all tested periodic forcing.
The goal may be to mitigate flutter in a turbine, but the zero-net-mass-flux actuator in
front the propeller has no perceivable effect. The goal may be to reduce skin friction
by mitigating incoming Tollmien–Schlichting waves, but the actuator only triggers
three-dimensional transition, which is far worse for drag. An ill-chosen actuation
strategy can undermine the entire control campaign. Hence, it is very comforting if
there exists a control study in the considered plant for which the actuation has been
shown to have a beneficial affect on the cost function.

A second, much easier aspect to consider is the formulation of the regression
problem for MLC. As the constants for genetic programming are chosen from a
parameter range, say [−5, 5], the actuation command b and sensor signal s should
also beof order one.Evidently, the learningof any regression technique is accelerated,
if it has to find mappings between order-one quantities as opposed to translating a
O(106) sensor signal into 1+ O(10−6) actuation command. In the simple case, that
actuation may only be ‘on’ or ‘off’, as with some valves, and a good choice of the
actuation command is 0 for ‘off’ and 1 for ‘on’.

7.2.3 Sensors

The purpose of the sensors is to infer control-relevant features of the flow state.
In linear control theory, the sensors ideally allow one to estimate the controllable
subspace of the system. In a turbulent flow, the choice of the type, the locations, and
the dynamic bandwidths of the sensors should reflect the assumed enabling actuation
mechanism. We refer to [43] and references therein for corresponding guidelines.

Secondly, the sensor signals are ideally hardly correlated so that each sensor
provides new information about the state.
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Thirdly, we reiterate that the sensor signals should be suitably centered and scaled
to become of order unity. Let s∗

i be the raw i th sensor signal. Let s∗
i,min and s

∗
i,max be

the minimal and maximal values, respectively. Then, learning of MLC is accelerated
by using the normalized signal,

si = s∗
i − s∗

i,min

s∗
i,max − s∗

i,min

, (7.3)

as input in the control law.
As discussed in the examples of Chap.6, fluctuations may be a better input for

the control law than the raw signal which is affected by drifts. Frequency filtering of
the raw signals may also improve performance of MLC. Yet, we strongly disadvise
against any of such filtering—at least in the first applications of MLC. Any filtering
is an expression of an a priori assumption about the enabling actuation mechanism.
This bias may prevent MLC to find a more efficient unexpected control, as we have
witnessed in half of our studies.

7.2.4 Search Space for Control Laws

The search space for control laws is a potentially important design parameter ofMLC.
In Chap.3, the linear-quadratic regulator b = Ka was shown to be optimal for full-
state feedback stabilizing a linear plant. This result has inspired the MLC search for
full-state, autonomous, nonlinear feedback law b = K(a) stabilizing the nonlinear
dynamical system of Chap. 5. Similarly, MLC has improved the performance of the
experiments in Chap.6 with a sensor-based, autonomous, nonlinear feedback law
b = K(s). However, the optimal control of a linear plant which perturbed by noise
involves filters of the sensor signals, as discussed in Chap.4.

For the simple nonlinear plant in Chap.5, we have made the case that closed-loop
control is not necessarily more efficient than open-loop control. The generalized
mean-field system of this chapter can easily be modified to make periodic forcing
more optimal than full-state autonomous feedback. In some experiments, a periodic
high-frequency forcing b∗(t) = B∗ cosω∗t may stabilize vortex shedding much
better than any sensor-based autonomous feedback. In this case, any deviation of the
actuation command from a pure periodic clockwork might excite undesirable vortex
pairing. A simple solution for the MLC strategy is to consider the optimal periodic
forcing as an additional ‘artificial’ sensor sNs = b∗ and, correspondingly, as input
in the feedback law b = K(s). Now, this law depends explicitly on time and is not
autonomous anymore. The plant sensors may help to adjust the forcing amplitude,
like in extremum seeking control, or introduce other frequencies. The authors have
supervised MLC experiments in which this approach has lead to pure harmonic
actuation, to multi-frequency forcing and to nonperiodic forcing as best actuation.
The search space for optimal control laws may also include multi-frequency inputs

http://dx.doi.org/10.1007/978-3-319-40624-4_6
http://dx.doi.org/10.1007/978-3-319-40624-4_3
http://dx.doi.org/10.1007/978-3-319-40624-4_5
http://dx.doi.org/10.1007/978-3-319-40624-4_6
http://dx.doi.org/10.1007/978-3-319-40624-4_4
http://dx.doi.org/10.1007/978-3-319-40624-4_5
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and filters. Our preferred strategy is to start with direct sensor feedback b = K(s) and
integrate the best periodic periodic forcing as control input before exploring more
complex laws.

7.3 Time Scales of MLC

The MLC experiment is affected by three time scales. First, the inner loop has a
time delay from sensor signals to actuation commands. This time scale is dictated
by the employed hardware, for instance, the computating time for the control law
(Sect. 7.3.1). Second, the inner loop has a plant-specific response time, i.e. a time
delay from the actuation to the sensed actuation response. This time scale is related to
the plant behavior, e.g. the choice of the actuators and sensors and the flow properties
(Sect. 7.3.2). Third, the outer MLC loop has a learning time governed by the number
and duration of the cost function evaluations before convergence (Sect. 7.3.3). In this
section, we provide recommendations how to deal with all three time scales.

7.3.1 Controller

In the computational control studies of Chaps. 2, 4 and 5, we write the control law as

b(t) = K(s(t)), (7.4)

i.e. the actuation reacts immediately on the sensor signals. In a real-world experiment,
there is a time delay τb from sensing to actuation leading to another optimal control
law,

b(t) = Kτb(s(t − τb)). (7.5)

This time scale comprises three delays: (1) the propagation time from the sensor
location to the computational unit, e.g. the propagation of the pressure from the body
surface to the measurement device in tubes; (2) the computational time needed to
compute Kτb(s); and (3) the time from the computed actuation command b to the
actuator action. The times (1) and (3) would not occur in a computational study.
One could argue that (1) and (3) belong to the physical response time of the plant
or to the controller. In this section, we do something much simpler: We focus on the
computational time and ignore the plant-related delays. In addition, we assume that
τb is fixed and small with respect to the time scale of the plant dynamics, τb � τ . The
plant time scale might be quantified by or related to the first zero of the sensor-based
correlation function,

Cs(τ ) = s(t) · s(t − τ) = 0. (7.6)

http://dx.doi.org/10.1007/978-3-319-40624-4_2
http://dx.doi.org/10.1007/978-3-319-40624-4_4
http://dx.doi.org/10.1007/978-3-319-40624-4_5
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In fact, we can be less restrictive with respect to τb if the sensor signal at time
t − τb allows a good prediction of the values at time t ,

s(t) = φτb [s(t − τb)] . (7.7)

Here, φτb is the propagation map which may also be identified with the discussed
regression techniques. This can, for instance, be expected for oscillatory dynamics.
In this case, the instantaneous control law (7.4) can be recovered from Eq. (7.5) using
the predictor (7.7).

In the sequel, τb will be considered as the computational time. This can easily be
estimated for a binary tree of genetic programming with single input (Nb = 1). Let
us assume that the tree is maximally dense and has the depth 10. In this case, the
evaluation requires 29 + 28 + . . . + 1 = 1023 operations. A cheap modern laptop
has roughly 1 GFlop computing power, i.e. can compute 109 operations per second.
Hence, the computation time for one actuation command is 1 μs, or one millionth of
a second. This is one order of magnitude faster than an ultra-fast sampling frequency
100 kHz of modern measurement equipment. Typical time scales in wind tunnels
range from 10 to 100 Hz. Thus, τb/τ ≤ 10−4 and the computation time τb can
be considered small if not tiny by a very comfortable margin. The computer in the
TUCOROM experiment (Sect. 6.3) has 1 TFlop computing power, which would add
another factor of 1000 as safety margin. The computational time for the control law
is apparently not a major concern.

The real challenge is transferring the LISP expression of the control law to the
computational unit. The LISP expression may be pre-compiled and transferred to the
computational unit before evaluation of the cost function. In this case, the computa-
tion time is minimal. The LISP expression may also be read from the hard disk every
computation cycle and interpreted by the computational unit. The corresponding
time is orders of magnitude slower.

In otherwords, the potential bottleneck is the communicationbetween the innerRT
loop and the outer learning loop. Many communication protocols and architectures
exist.1 We consider here two philosophies, the mentioned interpreter implementation
(LISP parser) and the pre-compiled solution.

RT LISP parser: This parser function takes the LISP expression and sensor read-
ings as the inputs and outputs the control commands. The principle for this func-
tion is simple but auto-regressive which means that the CPU and memory cost is
bounded by 2l −1, where l represents the depth of the expression tree, i.e. function
complexity. Due to CPU and memory usage it can lead to low RT scheduler fre-
quency and overruns. This strategy is advisable only with Concurrent, DSpace or
equivalent high-end RT systems. Functions of this type have already been written
and tested in Simulink®, Labview®, Fortran, Matlab®and C++. This approach has
been employed in the TUCOROM mixing layer experiment (see Sect. 6.3).

1In principle, the file exchange can happen over different locations in a cloud, with a fast compu-
tational unit close to the experiment and the MLC learning performed remotely.

http://dx.doi.org/10.1007/978-3-319-40624-4_6
http://dx.doi.org/10.1007/978-3-319-40624-4_6
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Pre-compiled RT controller: In this case, MLC generates the code for the con-
troller and compiles it. The codewill contain thewhole generation to be evaluated.
The generated code will also make the update of the control law after each eval-
uation and account for the transient time between evaluations. The cost function
values may be returned to the outer MLC loop either after each evaluation or after
grading the whole generation. The second communication protocol is evidently
much faster than the RT LISP parser and advised for slower systems, like the
Arduino processors of Sect. 6.2.

The choice of the communication depends on the kind of RT system available:
a parser allows one to update the control law on the fly but is more demanding in
memory and CPU resources. This strongly indicates the use of a proper RT dedicated
computer with an efficient scheduler. On the other hand, a compiled micro-controller
is less flexible: the change of control law is either a scheduled event or enforces a new
compilation. The pre-compiled controller is not demanding in terms of programming
skills and can be operated with low-cost hardware.

The code of the RT system and of MLC may be written different languages. The
authors have successfully implemented the Matlab®code OpenMLCon:

• Matlab®and Simulink®(for ODE integration, as in Chaps. 4 and 5);
• C++, (Arduino) as in Sect. 6.2;
• Fortran (CFD code) and
• Labview®as in Sect. 6.3.

The use of any other language should not be more than a 3 hour exercise for a skilled
programmer.

7.3.2 Response Time of the Plant

Fluid flows are convective in nature. This leads to a time delay between actuation
and sensing. In feedforward control, actuators respond to oncoming perturbations
detected by upstream sensors. The mitigation of Tollmien–Schlichting waves in
laminar flows is one example for which this approach is shown to be successful.
In a feedback arrangement, the sensors record the actuation effect with a time delay.
This time delay can often be estimated by the convection time. Most turbulent flows
fall in this category, in particular drag reduction ormixing enhancement in bluff-body
wakes.

Inmodel-based control design, time delays are known to cause undesirable control
instabilities and lack of robustness. For model-free control, the time delay between
actuation and sensing is not a problemper se. SeveralMLC-based actuation strategies
have successfully worked with a time delay of 1 to 2 characteristic periods. Yet, a
degrading control performance may be caused by the increasing uncertainty of the
flow state between actuation and sensing. Ideally the time delay between actuation
and sensing should be long enough so that the actuation effect is clearly identifiable

http://dx.doi.org/10.1007/978-3-319-40624-4_6
http://dx.doi.org/10.1007/978-3-319-40624-4_4
http://dx.doi.org/10.1007/978-3-319-40624-4_5
http://dx.doi.org/10.1007/978-3-319-40624-4_6
http://dx.doi.org/10.1007/978-3-319-40624-4_6
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beyond the noise threshold but short enough so that the state uncertainty is still
acceptable. This aspect is beautifully demonstrated in wake stabilization experiment
by Roussopoulos [227].

7.3.3 Learning Time for MLC

The learning time TMLC of MLC using genetic programming with Ng generations
and Ni individuals reads:

TMLC = Ng × Ni × (Ttransient + Tevaluation) (7.8)

where Ttransient is the transient time for a new control law and Tevaluation the evaluation
time of the cost function.

A proper planning of aMLC experiment includes good choices for the parameters
that determine TMLC in Eq. (7.8). A minimal transient time Ttransient is determined by
the flow physics. The time for a transient from an actuated to an unforced state
(or the inverse process) is a good reference value. The evaluation time Tevaluation
should be large enough so that the approximate ordering of the J -values is right.
This requirement is distinctly different from requiring a 1% or 5% accuracy of the
J -value. The evaluation time for MLC can be expected to be much shorter if high
accuracy is not required. One might want to invest in the evaluation time during the
final generations when the explorative phase turns into an exploiting phase of MLC.

The next decision concerns the population size Ni and the number of generations
Ng . In larger-scale experiments, the measurement time TMLC is expensive and given
as a side constraint. Thus, the decision is how to distribute a given number of runs
Ni × Ng among population size and convergence. Given, for instance, Ni × NG =
1000 evaluations in a measurement campaign, one is left with several possibilities:

1 generation of 1000 individuals. The search space is explored as widely as pos-
sible but no convergence is achieved: this is a Monte-Carlo process.

10 generations of 100 individuals. The search space is initially less explored, but
the evolution will provide increasingly better individuals.

100 generations of 10 individuals. The search space is hardly explored initially.
If the initial generations include winning individuals, the evolution may provide
progressively better values, like in gradient search. Otherwise, the evolution may
terminate in a suboptimal minimum for the cost function.

In other words, the choice depends on the assumed complexity of the cost function
variation or number of local minima. The more complex the landscape of the cost
function is, the more MLC will profit from exploration with a large number of
individuals in a given generation. The more simple the landscape, the more MLC
will benefit from exploitation with large number of generations. A good strategy is
to start with a large population at the beginning for good exploration and switch
to a much smaller population for good exploitation. The degree of exploration and
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exploitation is also determined by the MLC parameters as will be elaborated in the
following section.

7.4 MLC Parameters and Convergence

In this section, we discuss the convergence process of MLC based on genetic pro-
gramming. The discussion is representative for other evolutionary algorithms aswell.
The purpose is to minimize the MLC testing time (7.8), more precisely Ni × Ng , for
an acceptable control law.

Most regression techniques are based on iterations. Gradient search, likeNewton’s
method, can be conceptualized as an iteration of a population with a single individ-
ual Ni = 1 sliding down a single smooth local minimum. This process is called
exploitation. Evolutionary algorithms, like genetic programming, assume multiple
minima and hence evolve a large number of individuals Ni � 1. The search for
new minima is called exploration. Evidently, evolutionary algorithms need to make
a compromise between exploring new minima and exploiting found ones.

In the following, we discuss diagnostics of the convergence process (Sect. 7.4.1),
MLC parameters setting the balance between exploration and exploitation
(Sect. 7.4.2), and pre-evaluation of individuals to avoid testing unpromising can-
didates (Sect. 7.4.3).

7.4.1 Convergence Process and Its Diagnostics

We analyze a complete MLC run from the first to the last generation Ng with Ni

individuals each. Focus is placed on the cost function values as performance metrics.
Let J j

i be the cost function value of the i th individual in the j th generation. These
values are sorted as outlined in Chap. 2. First, within one generation the cost function
values are numbered from best to worst value:

J j
1 ≤ J j

2 ≤ . . . ≤ J j
Ni

where j = 1, . . . , Ng. (7.9)

Second, elitism guarantees that the best individual is monotonically improving with
each generation, neglecting noise, uncertainty and other imperfections of the plant:

J 1
1 ≥ J 2

1 ≥ . . . ≥ J
Ng

1 . (7.10)

Figure7.1 illustrates the J -values of the first regression problem in Sect. 2.3.1.
The performance of MLC may be assessed from the following quantities. The best
individual J j

1 , j = 1, . . . , Ng is depicted in the bottom blue curve in Fig. 7.1. MLC
appears to be converged after about 30 generations.

http://dx.doi.org/10.1007/978-3-319-40624-4_2
http://dx.doi.org/10.1007/978-3-319-40624-4_2
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Thewhole populationmay be characterized by themedian value J j
�Ni /2�, where the

brackets �·� represent the nearest integer. The J -values vary over orders ofmagnitude
in each generation so that the mean value or variances are strongly affected by the
worst outliers. Arguably, themedian value is amuch better parameter of the evolution
of the whole population. The difference between best and median individual is an
indicator of the diversity of the population. The diversity is needed to explore new
potentially better minima.

The diversity of the evolutionary process is also characterized by another J -
value. The larger the J -value of an individual the less probable is the selection for
any genetic operation into the next generation. The J -value above which only 1%
of the population is selected for an operation is called the 1% limit and displayed in
Fig. 7.1. This limit follows roughly the median in the presented example.

A peculiar feature of Fig. 7.1 is the yellow curve corresponding to the identically
vanishing control function. This zero-individual can easily be produced from any
individual by multiplying it with 0.

Amore detailed insight in the evolution dynamics may be gained from population
densities. Let Jmin and Jmax be the best andworst cost values found in the wholeMLC

run.We equipartition log10 J in 1000 equidistant intervals I
pdf
k =

[
J pdf
k−1, J

pdf
k

]
where

— Minimal cost
— Median cost
— 1% limit
— J(b= 0)

j

J

Fig. 7.1 MLC run for example in Sect. 2.3.1 featuring the best and median J -values In addition,
the 1% limit indicates that all individuals above this line cumulate a 1% contribution to the genetic
content of the next generation. The yellow line indicates the cost of all identically null individuals

http://dx.doi.org/10.1007/978-3-319-40624-4_2
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Fig. 7.2 SameMLC run as in Fig. 7.1 butwith a 3-dimensional viewof the population density (7.11)

Jmin = J pdf
0 < J pdf

1 < . . . < J pdf
1000 = Jmax.

The logarithmic equipartition separates values which are orders of magnitude differ-
ent. Let

n j
k := card

{
J j
i : i = 1, . . . , Ni ∧ J j

i ∈ I pdfk

}
(7.11)

be the number of J values of the j th generation in the kth interval. Figure7.2 displays
the population density n j

k/Ni . We see islands of highly populated similar J -values
over several generations. These islands tend to get initially increasingly populated
until better islands are discovered.

The evolution of the generations can be beautifully visualized with multi-
dimensional scaling. This leads to a mathematically well-defined illustration of the
principle sketch of Fig. 2.12, i.e. indicates the landscape of J spanned by the pop-
ulation of control laws. Let Ki (s) denote the i th control law of an MLC run, i.e.
i = 1, . . . , Ni Ng . Let γ i = (

γ i
1 , γ

i
2

)
be a two-dimensional vector corresponding

to the control law. Let Di j = 〈‖Ki (s) − K j (s)‖〉 be a suitable metric between the
i th and j th control law. Kaiser et al. suggest such a metric in [155]. Then multi-
dimensional scaling provides a configuration of γ i which optimally preserves the
metric ‖γ i −γ j‖ ≈ Di j . Figure7.3 shows an example of a closed-loop control exper-
iment targeting drag reduction of a car model. The illustration indicates a clustering
and scattering of control laws with an apparent minima in the lower left corner. Sim-
ilar visualizations of other MLC experiments showed far more complex topologies.
The understanding of these topologies is still a subject of active research.

http://dx.doi.org/10.1007/978-3-319-40624-4_2
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Fig. 7.3 Visualization of an experimental MLC run for drag reduction of a car model with multi-
dimensional scaling (Courtesy: Ruiying Li for the data and Eurika Kaiser for the visualization).
The circles correspond to all individuals of a converged evolution with Ni = 50 and Ng = 5. The
J -performance of the individuals are color-coded with respect to the ordering. A control law at
the 90th percentile for instance illustrates that 90% of the J -values are worse and only 10% of
the J -values are better. The plane (γ1, γ2) preserves a metric between control laws in an optimal
manner (multi-dimensional scaling, see [155] for details)

7.4.2 Parameters

As outlined in Sect. 7.3.3, a large population size Ni promotes exploration while a
long evolution Ng supports convergence. In addition, the learning rate from genera-
tion to generation with given population size is affected by several MLC parameters.
The visualizations of Sect. 7.4 give a good indication of this learning process.

The learning speed of MLC is influenced by the genetic operation probability and
the selection of individuals.

Elitism Ne: A non-vanishing Ne ensures that the best performing individuals reap-
pear in the next generation and are not forgotten. Generally, Ne = 1 is a good
minimal choice. A larger number tends to copy very similar individuals in the
new generation, i.e. neither contributes to diversity nor to performance.

Genetic operation probability Pc, Pm and Pr : The sum of the three probabili-
ties must be unity, implying that only two probabilities can be independently
chosen. As discussed in Chap.2, replication ensures the memory of good individ-
uals, crossover promotes exploitation and thus better individuals, and mutation
promotes exploration and diversity of the population. Exploration, i.e. finding the
right minima, is initially more important that exploiting the minima that have

http://dx.doi.org/10.1007/978-3-319-40624-4_2


166 7 MLC Tactics and Strategy

already been discovered. Good starting values for Ni ∼ 100 were found to be
(Pr , Pc, Pm) = (0.1, 0.6, 0.3). Pr = 0.1 appears to be a uniformly good choice
independent of the population size Ni . Formuch larger population size Ni � 100,
a smaller Pm and larger Pc are advisable. Conversely, smaller population sizes
profit from choosing a larger mutation rate, e.g. Pm = 0.4.

Selection: The arguments of the genetic operations are determined by a stochastic
selection process of the individuals. Like genetic operations, the selection may
promote exploitation or exploration. The harsher the bias towards best performing
individuals, the larger the probability that the local minima will be exploited. The
individuals are chosen with equal probability in a tournament type selection. The
harshness of the selection is set by the tournament size. Setting Np = 7, enforces
that the upper 50% of the current population accounts for the genetic content of
99% of the next generation for Ni = 100.

7.4.3 Pre-evaluation

The initial generation is composed of randomly chosen individuals. Evidently, one
can expect that most individuals are non-performing, probably performing worse
than the zero-individual b ≡ 0. If random control laws would improve the cost
function, then control design would be simple.

Hence, a pre-evaluation of initial individuals is advised. Zero-individuals, for
instance, should be replaced by other random individuals. Constant individualsmight
also be excluded, depending on the control problem. Non-trivial individuals may be
excluded if typical sensor readings lead to function values or function behaviors
which are clearly out of bound in terms of amplitude or frequency content. The
delicate aspect is that the sensor readings change under actuation and a good guess
of the probability distribution of sensor readings p(s) is required.

Another strategy to avoid the testing of non-promising individuals is to reduce
the number of operations per individuals for instance by low initial tree depth for the
first generation.

Advanced material 7.1 Pre-evaluation in OpenMLC.
A more proactive measure can be undertaken by the use of a pre-evaluation function. This
function takes the individual as an argument and returns a simple logical. If ‘false’ is returned,
the individual is discarded and a new one is generated (or evolved). Detection of zero-
individuals can usually be easily achieved with a simple simplification of the LISP expression
(OpenMLCprovides the function simplify_my_LISP.m). Saturated control laws can be
detected by providing random time series’ covering the whole sensor range for all sensors
and discarding the control laws that stay constant (or keep the same value more than a pre-
determined percentage of the total samples).
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7.5 The Imperfect Experiment

Finally, we discuss the performance ofMLC under imperfections of the experiments,
like high-frequency noise (Sect. 7.5.1), low-frequency drift (Sect. 7.5.2), and the need
to monitor the experiment’s health status (Sect. 7.5.3).

7.5.1 Noise

In turbulence, noise is not an imperfection, but an intrinsic feature. For the purpose of
control, we consider noise as the high-frequency fluctuations which are not relevant
for the actuation mechanism. Noise impacts two aspects of MLC, the actuation
command and the cost function. The actuation command b = K(s) is affected by
noise in the sensor signals. Every operation in the expression tree for K can act as
noise amplifier and at some complexity the control lawmaybecome a noise generator.
Hence, the number of operations or the depth of expression tree needs to be limited.

Second, the impact of noise on the cost function is far less critical, as the corre-
sponding integrand is generally simple and the noise is largely integrated out.

The use of filters may improve MLC performance. Examples are low-pass, band-
pass or single-frequencyMorlet filters.We emphasize, again, that any predetermined
filter introduces a bias towards the expected actuation mechanism which is not nec-
essarily the most effective one. The choice of the proper filter may also be integrated
in the MLC search algorithm like in Chap.4.

7.5.2 Drift

Low-frequency drifts may arise due to changing operating conditions, e.g. changing
oncoming velocity, temperature change or varying hot-wire anemometer readings.
Drifts imply that effective individuals may degrade in performance and ineffective
individuals may improve. Drifts may also lead to the choice of different sensors in
the best control laws. However, within one or few generations, MLC will adjust to
the new operating conditions if the change in performance of a given individual is
slow with respect to the testing time of one generation. If the change is significantly
faster, the cost function values of a single generation are wrong and lead inevitably
to a poor ordering.

The cure for drifts depends on the cause. If the sensor readings drift, a re-
calibration in regular intervals is advised. If the cost function drifts, the cure may be a
normalization with the flow response to a periodic forcing. If the drifts are measured,
like the oncoming velocity, the parameter may be integrated into the control law. We
shall not pause to give a more exhausting list of drifts and potential cures.

http://dx.doi.org/10.1007/978-3-319-40624-4_4


168 7 MLC Tactics and Strategy

7.5.3 Monitoring

Finally, aMLC runmay be a time-consuming experiment with complex installations.
Apart from slow drifts, there may be sudden unintended changes of the equipment.
One or several hot-wire sensors may break. A pressure sensor may get clogged. An
actuator may fail. Or there may be a sudden drop in the pressure reservoir of the
actuator leading to significantly reduced actuator efficiency. Parts of equipment may
unintentionally vibrate for some control laws. And the list can be indefinitely contin-
ued. Hence, an automatic extensive health monitoring of the plant is strongly advised
to avoid extensive time on unsatisfying results. The authors have experienced several
times that MLC has exploited weaknesses of problem definition, the wind tunnel or
the actuator setup. It is a common experience that control optimization exploits the
weakest links of the theoretical problem formulation/constraints or imperfections of
the plant.



Chapter 8
Future Developments

The most fruitful areas for the growth of the sciences were those
which had been neglected as a no-man’s land between the
various established fields
Norbert Wiener Cybernetics: Or Control and Communication in
the Animal and the Machine, 1948

The future of machine learning control is bright, bolstered by concrete success stories
and fueled by steady advances in hardware and methodology. As pointed out by N.
Wiener, there is particularly fertile ground between two well-developed fields [276],
and it is likely that there will be many exciting new technological developments
between the fields of machine learning and control theory. This field will remain
vibrant as long as

(1) it addresses problems that are interesting, important and challenging,
(2) improving hardware facilitates increasingly ambitious demonstrations, and
(3) investments in fundamental research yield new paradigms and mathematical

frameworks.

Machine learning methods are beginning to enter the control of complex systems
with numerous demonstrations in closed-loop turbulence control. These machine
learning methods already pervade technology and information infrastructure, with
smartphones providing compelling examples. Potential applications in engineering
and industry may have an equally transformative impact. Examples include drag
reduction of cars, trucks, trains, ships, airplanes and virtually any ground-, air- and
water-born transport vehicle, lift increase of airfoils, aerodynamic force control mit-
igating wind gusts, internal fluid transport in ventilation systems and oil pipelines,
efficient operation of wind turbines, greener and stable combustion and efficient
chemical processes, just to name a few. Other applications concern more broadly any
fluid flows or networks with well defined inputs (actuators) and outputs (sensors),
like water and electricity supply in civil engineering, drug dosage and interactions
for medical treatments, or financial trading.

© Springer International Publishing Switzerland 2017
T. Duriez et al., Machine Learning Control – Taming Nonlinear
Dynamics and Turbulence, Fluid Mechanics and Its Applications 116,
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In this chapter, we outline promising methodological advances that are poised to
transform machine learning control (Sect. 8.1). Section 8.2 is dedicated to promising
enablers for systems with high-dimensional inputs and outputs. We also highlight a
number of exciting future applications that we believe will be heavily impacted by
MLC, resulting in innovative solutions to scientific, engineering, and technological
challenges of the 21st century [43] (Sect. 8.3). These directions are not exhaustive, but
merely offer a glimpse into the exciting future developments of machine learning in
the control of complex nonlinear systems. This chapter concludes with an interview
of Professor Belinda Batten (Sect. 8.5). Prof. Batten is an internally renowned scholar
in reduced-order modeling and control and pushes the frontiers of renewable wind
and water energy.

8.1 Methodological Advances of MLC

One of the many benefits of MLC using genetic programming is its simplicity and
generality, requiring little or no knowledge of the system being controlled. How-
ever, there are a number of targeted improvements that may expand the power and
applicability of genetic programming for MLC to a wider range of problems with
little added complexity.

Exploiting closeness of controllers: A major goal of future efforts is to reduce the
training time required for MLC using GP. Genetic programming is an extremely
flexible framework for building complex input–output functions, although these
representations are not unique, and it is often unclear whether or not two GP con-
trollers are similar in function. Improving this notion of closeness of controllers
is critical to avoid redundant testing and to reduce training time. In addition,
having an induced metric on the space of GP controllers may result in effec-
tive controller reduction, so that complicated, high-performance controllers can
be reduced to their simplest form. One exciting development in this direction is
related to embedding the space of GP controllers in a simple metric space using
hash inputs. The function of a GP controller can be uniquely identified based on
its response to a random input sequence, likely sampled on the attractor. These
hash functions then define an embedding which is much lower dimensional and
Euclidean; moreover, if the sampling is truly random and incoherent with respect
to the structure of the controllers, then it is likely that the embedding will preserve
the controller geometry. This is closely related to compressed sensing theory (see
below) and the Johnson-Lindenstrauss theorem [147].

Multi-dimensional scaling: The progress of an evolutionary algorithm may be
visualized in a two-dimensional plane with a suitable metric of the control laws
and multi-dimensional scaling. Thus, close (distant) control laws in the metric
space are close (distant) in the visualization plane. Each control law is associated
with a value of a cost function. Thus, the visualization plane may indicate the
topology of the cost function, e.g. the number of populated minima, maxima
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or saddle points. An example of such a visualization of an ensemble of control
laws has been provided in Sect. 7.4.1. Multi-dimensional scaling may also be
used to illustrate MIMO control laws. These visualizations may provide valuable
information for on-line decisions during a control experiment, e.g. tuning the
levels of exploration versus exploitation.

Library building and dictionary learning: Another straightforward modification
to GP for MLC is the implementation of library building and dictionary learning.
Throughout the GP training process, a tremendous range of control laws are
explored, and typically, only information about the final controller performance
and the GP function representation are used in future iterations. Although it is
necessary to obtain a statistically averaged measure of performance, or fitness,
for each controller, it is likely that data from individual control experiments will
provide rich information about attractor control. In particular, there are transient
events in turbulence control, and it is likely that controllers are locally exploring
favorable regions of phase space. Understanding controller individual histories
at a higher time resolution may provide higher performance, multi-resolution
analysis and control.

Multiple operating conditions: In addition, library building may result in adaptive
GP for MLC for systems with multiple operating conditions. In cases where there
are slowly varying parameters that change the operating conditions of a system,
such as temperature, altitude, chemical composition of feed stock, etc., there may
be multiple optimal control strategies. Library building and dictionary learning
provide a robust strategy to handle these cases with multiple attractors. First, the
system parameters are characterized by comparing against a library of previously
identified attractors; sparse identification algorithms are particularly promising,
and will be discussed below [279, 34, 107, 46, 42]. After the parameters are
roughly characterized, the controller jumps to the best GP controller that fits the
situation; we refer to this as fast feedforward control. Subsequently, additional
slow feedback control can be included to add robustness to un-modeled dynamics
and disturbances. However, it is likely that the inherent feedback built into GP
controllers will be sufficient for many situations.

Learning robustness from control theory: Finally, there is an opportunity to bridge
the gap between the excellent performance obtained using MLC and the rigor-
ous theoretical foundations provided by classical control theory. Investigating
issues related to robust performance of MLC will continue to be important to pro-
vide theoretical guarantees. These guarantees are particularly important in many
aerospace applications, such as boundary layer control on a wing or combus-
tion control in a jet engine, since they allow for controller certification. Although
MLC already provides impressive robustness to varying environmental conditions
in practice, it may be possible to augment robustness using techniques from clas-
sical control theory. It will also be interesting to see how the introduction of filters
and dynamic estimators into the MLC framework will impact the control of real
engineering-relevant systems. Lastly, there is great interest in the community for
insight gained from effective MLC.

http://dx.doi.org/10.1007/978-3-319-40624-4_7
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Genetic programming is a powerful and flexible regression technique, but machine
learning has many more techniques that may be used for MLC. There are a number
of more general methodological advances that will likely lead to new innovations
in machine learning control in the future. The fields of machine learning, control
theory, and data science in general, are rapidly growing and steady progress is being
made on many fronts. Additionally, innovations in sparse sensing and uncertainty
quantification are resulting in improved sensor and actuator placement, which will
undoubtedly impact MLC strategies. Here, we provide a high-level overview of some
of these exciting recent techniques.

Machine learning applications: The field of machine learning is developing at an
incredible pace, and these advances are impacting nearly every branch of the phys-
ical, biological, and engineering sciences [30, 92, 168, 190, 194]. This progress
is fueled by a combination of factors, including concrete success stories on real-
world problems, significant investment of resources by large corporations and
governments, and a grass-roots enthusiasm in the domain sciences. Surrounding
this movement is the promise of a better future enabled by data science.

Machine learning of the plant: In a sense, aspects of machine learning have
already been in use in classical engineering design and control for decades in the
form of system identification [150, 174]. The goal of machine learning, like system
identification, is to train a model on data so that the model generalizes to new test
data, ideally capturing phenomena that have not yet been observed. Recent tech-
niques in machine learning range from the extremely simple and general to highly
sophisticated methods. Genetic programming has been used to identify nonlinear
dynamical systems from data [32, 220, 240], and sparse variants exist [275]. The
sparse identification of nonlinear dynamics (SINDY) algorithm [44] uses sparse
regression [266] for nonlinear system identification.

Neural network based control: Machine learning has already been used in a num-
ber of control schemes for decades. In fluid dynamics, neural networks are used to
identify accurate input–output maps to describe phenomena such as the growth of
structures in a boundary layer and reduce skin-friction drag [171] as an add-on to
opposition control [66]. Other examples where neural networks have been used to
model and control turbulence include [95, 189, 193]. Neural networks constitute
a set of bio-inspired algorithms to model input–output behavior using a coupled
network of individual computational units, or “neurons”. These algorithms were
widely celebrated in the 1990s, but fell out of mainstream use, when it became
clear that they were unable to solve many challenging problems. For example,
although neural networks may be tuned to approximate nearly any input–output
function, they are prone to overfitting and local minima in optimization. However,
recently, the advent of deep convolutional neural networks (CNNs) has brought
these algorithms back into the forefront of research [78]. In particular, deep neural
networks are being constructed to identify complex phrases to describe scenery
in unstructured images [69] and process natural language [132]. Perhaps more
famously, these networks have resulted in the Google deep dream.



8.1 Methodological Advances of MLC 173

Genetic algorithm based control: Genetic algorithms [76, 137, 122] have also
been widely used to identify parameters of both models and controllers for com-
plex systems, such as fluids. Unlike genetic programming, which identifies both
the structure and parameters of a model, genetic algorithms only identifies para-
meters of a model with a fixed structure. However, both genetic algorithms and
genetic programming are evolutionary algorithms, relying on advancing gener-
ations of individuals and evaluating their fitness. Genetic algorithms have been
successful in many applications where the structure is known.

Clustering: In addition to algorithms that identify input–output maps, there is also
wide use of machine learning algorithms for classification or clustering data. For
example, many complex systems are non-stationary and may be characterized by
multiple attractors in different parameter regimes. In these systems, it is often not
necessary or even helpful to estimate the full high-dimensional state of the sys-
tem, but instead it may be sufficient to characterize the coarse system behavior. In
this case, classification algorithms [280] (K-means, K-nearest neighbors, LDA,
QDA, SVM [242, 253, 259], Decision Trees, Random Forests, etc.) are particularly
useful. These classification algorithms are generally categorized into supervised
algorithms, where the training data is labeled, and unsupervised, where the rel-
evant clusters are unknown ahead of time. Classification is especially important
in control, as each classification may lead to a control decision. For example, in
ultrafast laser systems with multiple operating regimes, sparse classification algo-
rithms have been used to rapidly identify the operating conditions, after which
the controller jumps to a pre-determined near-optimal control setting and a slower
adaptive control algorithm adds stability and disturbance rejection [42, 107]. In
fluids, classification of operating regimes is also being explored [14, 34, 46]

Reinforcement learning: In robotics, the combination of machine learning and con-
trol has been proceeding steadily for at least a decade. Techniques for autonomous
learning and reinforcement learning [258] have been widely adopted to control
robots, both autonomous and tethered. Iterative learning control is used for track-
ing control, for example of robot arm position [35]. Similar algorithms are also
used in brain-machine-interface problems, such as to train prosthetic devices.

The field of machine learning, and data science more generally, relies on a num-
ber of key steps: (1) data scrubbing, (2) feature extraction, mining, or engineering,
and (3) model building. Each stage is crucial. The argument that machine learning
will replace highly skilled domain scientists and engineers is somewhat facetious,
considering that these algorithms do not work without a notion of what is important
in a problem. For example, determining which labels should be used for training and
engineering relevant features to distinguish various aspects of the data remain highly
creative and critical human tasks in many disciplines.
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8.2 System-Reduction Techniques for MLC—Coping
with High-Dimensional Input and Output

This textbook contains examples multi-input multi-output (MIMO) control with few
inputs and outputs. The learning of control laws can be expected to take longer as the
number of inputs and outputs increases. This is particularly true for high-dimensional
actuation like surface motion or high-dimensional sensing like real-time particle
image velocimetry, like in Sect. 6.1, or image-based feedback. In this section, we
outline approaches coping with such high-dimensional input and output.

System reduction: Dynamical systems and control strategies have long benefited
from dimensionality reduction, relying on the fact that even complex high-
dimensional systems typically exhibit low-dimensional patterns that are rele-
vant for models and control [125, 138]. More generally, it has been observed
for decades that nearly all natural data signals, such as audio, images, videos,
laboratory measurements, etc., are inherently low-dimensional in an appropriate
coordinate system, such as Fourier or Wavelets. In this new coordinate system,
many of the coordinates of the data will be negligibly small, so that the original
signal can be accurately represented by a sparse vector, containing mostly zeros,
in the new basis. This inherent sparsity of natural signals is the foundation for
data compression, such as MP3 for audio and JPEG for images. PCA provides a
tailored basis for optimal low-rank representation of data.

Compressed sensing: A recent mathematical breakthrough, called compressed
sensing [18, 50, 52, 84, 267], has upended the traditional paradigm of collect-
ing and analyzing data. Instead of painstakingly measuring every variable in a
system, only to compress and discard the majority of the negligible information
in a transform coordinate system, it is now possible to measure significantly less
data at the onset and infer the relevant terms in the sparse transform basis.
In the past, solving for these relevant terms from subsampled measurement
data would amount to a brute-force combinatorial search. This class of non-
polynomial-time, or NP-hard, problem does not scale favorably with the size
of the data, and Moore’s law of exponentially growing computer power does not
scale fast enough to help. A major breakthrough in compressed sensing is an
alternative algorithm based on convex optimization using the sparsity-promoting
�1 norm: ‖x‖1 = ∑N

k=1 |xk |. It has been shown that under certain reasonable
conditions, solving for the vector x with the smallest �1 norm will approximate
the vector with fewest nonzero entries. The measure of nonzero entries is often
called the �0 “norm”, although it does not satisfy the properties of a norm; it is
also equivalent to the Hamming distance of the vector from the zero vector, as in
information theory. This convex optimization does scale favorably with Moore’s
law, providing a clear path to solve increasingly large problems in the future.
Another innovation surrounding compressed sensing is the establishment of clear
conditions on when the theory will work. First, there must be sufficient measure-
ments to estimate the nonzero transform coordinates; this minimum number of
measurements depends on the original size of the vector, the expected sparsity

http://dx.doi.org/10.1007/978-3-319-40624-4_6
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of the vector in the transform basis, and the level of noise on the signal. Next,
the samples must be sufficiently incoherent with respect to the vectors that define
the sparsifying basis; in other words, measurements should be as orthogonal, as
possible, to all of the basis directions. It was shown that random projection mea-
surements of the state (i.e., taking the inner product of the state vector x with a
vector of identical independently distributed Gaussian elements) provide nearly
optimal compressed measurements, regardless of the sparsifying basis. This is
truly profound, as this enables a universal sparse sampling strategy. However,
random projections of the state are not necessarily physical measurements, since
they still require having access to all of the information in x. A more useful
engineering measurement is often the spatially localized point measurement, cor-
responding to a single physical sensor. Fortunately, single point measurements
are incoherent with respect to the Fourier transform basis, so that many signals
may be reconstructed from few point measurements.
Regardless of our interest in full signal reconstruction, there are huge implica-
tions of sparsity promoting techniques and compressed sensing in engineering.
Many of the concepts are applicable more generally to machine learning, mod-
eling and control, including measurement incoherence, working on compressed
subspaces of the data, and the structure and sparsity of data in general. For exam-
ple, if a categorical or a control decision is desired, as opposed to a full-state
reconstruction, it is often possible to use randomly sampled measurements and
still achieve high classification performance. It is also useful to consider the effect
of subsampling or projecting data onto a low-dimensional measurement space.
The Johnson-Lindenstrauss theorem [147] and the restricted isometry property
(RIP) [51] provide powerful quantification of the distortion of high-dimensional
inner products after the data is compressed. These concepts are closely related
to unitarity, and they may be used to embed high-dimensional data, or functions,
as in the case of genetic programming, in a low-dimensional metric space. Hash
function embedding is already being used in fluid flow control [183].

Sparse sensor and actuator placement: The placement of sensors and actuators
is a critically important stage in control design, as it affects nearly every down-
stream control decision. However, determining the optimal placement of sensors
and actuators is an NP-hard problem, which does not have an elegant solution,
but rather involves a brute-force combinatorial search. In particular, this strategy
does not scale well to even moderately large problems of interest. To compound
the difficulty, often sensors may be quite expensive, as in the case of putting trac-
ers in the ocean or human vaccinators in a foreign country. Even if sensors are
inexpensive, processing the vast streams of data from a sensor network may be
intractable, especially for mobile applications which are power and computation-
ally limited.
Recent advances in compressed sensing (see above) are poised to revolutionize
sensor and actuator placement for control problems. From an engineering perspec-
tive, the ability to solve NP-hard optimization problems with convex optimiza-
tion routines is transformative. Fortunately, the sensor placement problem may be
thought of as a compressed sensing problem under certain conditions, as we are
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trying to find the few best locations to maximize a well-defined objective func-
tion. Sparse sensor optimization using compressed sensing techniques has already
been implemented for categorical decision making in complex systems [14, 39].
Extending these methods to optimize sensors and actuators for a control objective
is an important area of current research. Finally, extending the compressed sensing
framework to dynamic point measurements, such as Lagrangian tracer elements,
has huge potential for the fields of oceanographic and atmospheric sampling.

8.3 Future Applications of MLC

MLC can be expected to address many applications from everyday life to industrial
production. Many control problems have a well-defined cost function, a finite number
of sensor signals (outputs) which monitor the state and a finite number of actuation
commands (inputs) which shall improve the system performance. In short, we have
a multiple-input multiple-output (MIMO) plant and search for a control logic which
optimizes a cost function.

Most factory processes fall in the category of a MIMO control problem. Åström
and Murray [223] provide an excellent introduction in the world of control problems.
The key strength of MLC comes into play when the plant behavior departs from linear
dynamics and eludes current methods of model-based control.

Feedback control of turbulence is a grand challenge problem for control design
as the plant incorporates three key difficulties: (1) high dimension, (2) nonlinearity,
and (3) potentially large time-delays (see Chap. 1). Turbulence increases the power
required to pump gas and oil in pipe-lines and is a major source of drag of ground,
airborne, and maritime transport. Wind turbulence increases maintenance costs of
wind turbines via gusts and creates dangerous situations for ground- and airborne
transport. In contrast, turbulence has desirable mixing properties in heat exchangers,
combustion and chemical processes.

Effective turbulence control can contribute to a key challenge of modern society:
renewable energy production and reduced energy consumption. The world’s primary
energy supply has more than doubled from 6,106 m1 in 1973 to 13,371 m in 2012
[3]. The consumption in 2012 was 1,555×1017 J corresponding to an average rate
of 17.75 TW or 2.5 kW per person on this planet. This corresponds to one powerful
heater per person operating day and night. On the downside, the environmental cost
of energy production is an increasing challenge. Part of this cost is immediately felt
as smog in the city or as noise near streets, railroads and airports. Other costs are
indirect long-term consequences: Coal and fuel consumption provided 60.4 % of the
2012 energy supply [3] and are particularly problematic because the CO2 emissions
affect our climate. Our very existence is threatened by man-made global warming.
The Nobel committee has appreciated this fact by awarding the 2007 Peace Nobel
Price to the International Panel on Climate Change and Al Gore “for their efforts to

1Mtoe means million ton of oil or equivalent (11.63 TWh).

http://dx.doi.org/10.1007/978-3-319-40624-4_1
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build up and disseminate greater knowledge about man-made climate change, and to
lay the foundations for the measures that are needed to counteract such change” [1].

On the demand side, 20 % of the worldwide energy consumption is used for
transport, mostly by oil [82]. This demand corresponds to a cube of oil with each
side measuring nearly 14 km. In 2014, the USA used 28 % of its energy consumption
for transport with 92 % provided by fuel. The economic price of world transport
amounts to 10 % of the world gross domestic product (GDP) in 2011 [82].

The relevance of sustainable traffic may be measured by the fact that the European
Research Council supports over 11,000 research grants on this topic. In following,
we describe several transport-related opportunities for MLC:

Drag reduction of trucks: About one third of the operating costs of trucking com-
panies is for fuel. The average profit margin is 3–4 % in the USA. Thus, a 5 %
reduction on fuel costs, for instance by active flow control, spells a substantial
increase of the profit. Passive means, like vanes for the rear side are already
for sale. Active control solutions have already been tested on the road and have
proven to save 5 % fuel already under real-world traffic conditions. Experiments
with small-scale vehicles demonstrate the possibility of a 20 % drag reduction
[19, 212] at a fraction of the energy cost.

Drag reduction of cars: Personal cars are less subject to economic considerations
as in the trucking industry. However, the European union has identified the devel-
opment of sustainable transport as a cornerstone challenge for the next decades.
To encourage efforts in that directions, European union legislation [202] has set
mandatory emission reduction targets for the car industry. The new standards
impose a reduction of 30 % of greenhouse gas emissions and corresponding fuel
consumption for new cars by 2020. Meanwhile, the transportation industry is a
strategic economic sector in Europe accounting for 4.5 % of the total employment
(10 million people). However, the market for new vehicles in European countries
is declining, whereas that of emerging countries is rapidly growing. To remain
competitive in this market, European car manufacturers must develop disruptive
technology concepts to produce safer and more sustainable vehicles.
Improving the aerodynamic performance of road vehicles by flow control can help
fullfill these requirements, in particular at highway speeds. At highway speeds,
overcoming aerodynamic drag represents over 65 % of the total power expense
[140, 184]. This explains significant aerodynamic improvements on automobiles
during the last decades. Most existing flow control approaches to reduce vehicle
drag on commercial road vehicles are passive [118]. They rely on aerodynamic
shaping, such as well-rounded contours (especially at the front), rear slope angle,
and add-on devices [70]. Such passive approaches, however, are restricted by
design and practical considerations and cannot be ‘turned off’ when not needed
or modified to adapt to changing conditions.
Recently, significant research has been focused on active flow control (AFC)
solutions. Cattafesta and Shelpack [54] give an extensive overview of possible
actuation mechanisms, whereas [65] present the most common AFC approaches
on bluff bodies. Of the many available approaches, a large subset is considered as
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an academic exercise, such as rotary [27, 81], streamwise [58], and transverse [31,
53] oscillation of a bluff body. Of the practical and realistic AFC mechanisms,
many were investigated on the Ahmed body [4], such as synthetic jets [208],
pulsed pneumatic actuation [149, 226], microjects with steady blowing [10], and
Coanda blowing [104, 116]. AFC on heavy truck vehicles were also investigated,
such as synthetic jet actuators [96], and Coanda blowing [97, 98].
A drag reduction of 23 % has been achieved on a truck model with steady Coanda
blowing [212]. The saved towing power was 3 times the invested actuation energy.
A better actuation efficiency of 7 has been achieved with high-frequency Coanda
blowing for a blunt-edged Ahmed body by [20] resulting in a 18 % drag reduction.
Both studies were based on a working open-loop control. The implementation of
MLC is the logical next step after a working AFC. Machine learning control
has recently been shown to improve existing control of an Ahmed body and a
small-scale Citroën model in OpenLab PPRIME/PSA, France.

Safety of cars and trucks under wind gusts: Side-wind stability is important for
passenger comfort and safety of all ground vehicles. It is particularly critical
and a safety issue for vehicles with large projected side area, such as trucks and
buses. Accidents linked to crosswind have been reported by several governmental
agencies [48]. Side-winds and side-gusts originate from different sources such as
weather, surrounding traffic, or the topology of the terrain next to the road. Sev-
eral numerical [126, 145] and experimental [59, 118] studies were conducted to
understand the dynamics of such flows. Both steady [15, 139] and unsteady [59,
268] crosswind investigations have been researched. The findings of these afore-
mentioned studies and others can be summarized as follows:

• The driving stability decreases with increasing speed.
• A reduction of the lateral projected area in the back will reduce the rear side

force and thereby the yaw moment. However, this relation is not valid for well-
rounded rear-end configurations (C- and D-pillars).

• A-pillar radiusing has a large influence on the yaw moment.
• The center of pressure of the aerodynamic forces has a large impact on the

vehicle stability.
• Directional stability depends more on yaw moment than on the overall side

force.
• For a wide range of vehicles, the yaw moment increases approximately linearly

with the yaw angle up to 20◦.

Despite the numerous studies on side-wind effects and driving stability, very few have
tackled the issue using AFC. To our knowledge, only Englar [97, 98] and Pfeiffer
et al. [212, 213] applied Coanda blowing on the 4 rear edges of a truck to reduce drag
and to control the yaw moment. Whereas Englar [97, 98] only implemented AFC
as an open-loop, Pfeiffer et al. [212, 213] successfully applied it as a closed-loop
control. The latter were able to achieve a leading 23 % drag reduction and a complete
authority over the yaw moment. However, further improvements on the previous
results can be achieved:
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• Distributed actuation comprising all locations with demonstrated effect on drag
and yaw;

• Distributed sensing providing real-time flow information;
• Employing very general, nonlinear and robust control laws comprising periodic,

multi-frequency, and adaptive in-time closed-loop control;
• Reduction in actuation power for both drag minimization and yaw control.

All these new possible improvements have two themes in common, safety and effi-
ciency. MLC can optimize open-loop, adaptive and closed-loop control by using
harmonic functions as additional arguments of the control laws.

High-lift configuration of passenger aircraft: Civil aircraft are highly optimized
for cruise conditions. Typical lift-to-drag ratios are around 17. This means 1
Newtons of thrust lifts 17 N of weight at a cruise speed around 850 km/h. During
landing the main goal is not a good lift-to-drag ratio but a steep descent at low
velocity to reduce the noise signature on ground. This is achieved with a high-lift
configuration through a reeled-out flap. Active control can prevent early separation
and reduce the size of these flaps for a given lift. Thus the weight of the aircraft
is reduced during cruise resulting in lower propulsion power and thus reduced
fuel consumption. This opportunity is being pursued by the two major passenger
aircraft producers, Airbus and Boeing, and is the subject of intense research.
The economic aspect of reduced fuel consumption may be appreciated from the
following data: Average profit margins are between 1–2 %. Fuel is with a 28 %
contribution the most important operating cost of passenger airlines (2014, US
airlines). Fuel may represent around 40 % of the maximum take-off weight. The
airline not only saves fuel costs with active flow control. More importantly, it
may replace 80 kg fuel by a paying passenger. In a 100 passenger airplane one
passenger amounts to 1 % of the income and thus accounts for a significant change
in the profit margin.

Nacelle of a passenger aircraft: During take-off, the engines produce about 6
times the thrust during cruise and can lift around 30 % of the passenger aircraft. The
large nacelle prevents the recirculation bubble from extending to the compressor,
which would result in a dangerous loss of thrust. The large nacelle is only needed
for about one minute of maximum thrust during take-off. Active flow control
at the inlet may reduce size the nacelle and thus reduce weight. This is another
opportunity to save fuel.

Cavity of aircraft and trains: Wheel cavities of aircraft are a major noise source
during landing. Similarly, cavities between train wagons produce noise. This noise
can be significantly mitigated by feedback flow control [232]. The cavity noise
reduction is a subject of intense research.

Drag reduction of ships: All moving ships create a wave pattern on the water. These
waves require energy to be created and cause additional drag on the ship. For small
ships, wave drag may be 80 % of the total drag! One may conceive active vanes at
the front of the ship to mitigate part of the wave drag. For full-scale tankers, the
wave drag reduces to 20 % of the total drag but is still substantial. An expected
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5 % reduction of drag is considered as a threshold value for engaging in a new
expensive ship design. The remaining portion of the drag is due to skin-friction.

Skin friction reduction: About 80 % of the propulsion power of tankers and ocean
liners are due to skin friction drag. Future ships may profit from drag reduction
due to hydrophobic surfaces. Similarly, skin friction is the major drag source
of passenger airplanes. Riblets have been shown to reduce skin friction drag by
up to 11 % and are actively pursued by aircraft manufacturers. Skin friction may
also be mitigated with distributed local suction and blowing. Drag reductions of
25 % have been reported in low Reynolds number simulations [66]. At larger
Reynolds numbers the reduction decreases. The distributed suction/blowing acts
on plus unit scale to fight sweeps and ejections. An experimental realization would
require myriad of actuators and sensors and will not be feasible for a long time.
A more realistic active control is oscillatory wall motion. Numerical simulations
[66] with high frequency oscillation show a 40 % drag reduction. In experiments
at RWTH Aachen, a 5 % drag reduction was obtained. Feedback control with wall
motion has hardly been explored.

We briefly mention other opportunities of feedback turbulence control and hence
MLC.

Rockets: Solid fuel rockets may develop acoustic instabilities in the interior body
which may destroy the rocket. Evidently, this is an opportunity for closed-loop
control.

Wind turbines: Wind gusts create sudden loads on the rotor hub and bearings
of a wind turbine. These forces reduce the mean-time between failure and thus
make the maintenance effort more costly. Feedback controlled flaps at the trailing
edge of the airfoil can reduce the unequal loading. The development of suitable
hardware solutions and corresponding control logic is an active area of research.

Water turbines: Many underwater flows, such as in a river, may produce a more
steady loading. Preliminary results of the authors show that accelerating and
decelerating a cross-flow turbine to excite unsteady fluid forces can increase the
energy efficiency by 80 % [256].

Gas turbines: Lean combustion reduces COX and NOX emission. However, in the
lean limit, the danger of blow out or combustion instabilities increases. Closed-
loop mitigation of combustion instabilities via the change of fuel supply or fluid
mechanic actuators are a demonstrated opportunity towards greener energy pro-
duction [114].

Combustion engines: The internal combustion engine is ubiquitous in many modes
of transportation, providing propulsion for most motorbikes, cars and trucks and
convert chemical energy through combustion in mechanical energy via a periodic
piston operation. Despite the periodic piston movement, the flow exhibits large
cycle-to-cycle variations. Some cycles are good for combustion, particularly if
the fuel is well mixed in the piston by turbulent mixing. Some cycles are less
efficient. An ongoing effort of all engine producers is to reduce these cycle-
to-cycle variations and to stabilize a uniformly good mixing. Fuel injection or
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mechanical actuation may be elements of a feedback stabilization for a better
operation.

Pipe-lines: The power needed to pump oil through pipe-lines can be significantly
reduced by the addition of polymers. One polymer molecule per 1 million oil
molecules may reduce drag by 40 %. Closed-loop turbulence control can hardly
compete with this efficiency. However, there are still large opportunities for closed-
loop control for gas-liquid-solid mixtures close to an oil plant.

Air conditioning: The goal of air conditioning is increased comfort. Ventilation
shall refresh the air at appropriate temperature without unpleasantly felt air
streams. MLC may learn an optimal air stream management based on sensor
information.
Air conditioning causes other problems in hospitals. Airborne viruses need to be
neutralized at active surfaces in the ducts. Such surfaces cause additional pressure
losses and require thus a larger ventilation power. The mixing problem may be
formulated as follows: a fluid particle with a potential virus must be sufficiently
close to the active surface at least once with near certainty. However, multiple
encounters with the active surface would lead to unnecessary pressure losses.
This is an exciting mixing problem for closed-loop turbulence control.

Pharmaceutical and chemical processing: The industrial production of food, e.g.
chocolate, may happen in vessels with diameters up to 5 m. Different constituents
need to be uniformly distributed in these vessels. The mixing may be closed-
loop controlled by the inlets and mechanical mixing and monitored by cameras.
Numerous production processes require a good mixing in vessels or in pipes. This
is another exciting closed-loop mixing problem for which MLC is predestined.
The effect of mixing is highly deterministic yet hardly predictable. Mixing has
largely eluded an intuitive understanding.

The previous examples have focused on turbulence control. The application of
MLC requires only a finite number of actuators and sensors. In addition, the cost
function needs to be strongly related to the control law. In other words, the controlled
plant exhibits statistically stationary behavior. Many complex systems fall in this
category. Examples include

Predictions for solar and wind energy: The operation of an electricity network
shall satisfy the unsteady demand and prevent overproduction as the storage
capacities are limited. Hence, the production of renewable energy needs to be
predicted from weather and other data to identify potential supply-and-demand
problems early in time. This is an estimation problem which can also be solved
with genetic programming [220]. Here, the input is the weather and other data,
the output the energy production and the cost function the difference between
estimated and actual production.

Short-term trading at stock markets: Here, the plant is the stock market, the input
the trading action of one player, the output the supply and demand curve, the con-
trol logic the automated trading, and the objective function the daily profit. Long-
term trading is far more challenging for automated learning as the assumption of
statistical stationarity is not satisfied. The Dow Jones index, for instance, has the
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long-term tendency to increase. Companies may be founded, new economies may
appear, or old economies may disappear, etc.

Dog training: All dogs, in fact all animals, are trained with rewards (and pun-
ishment). Intriguingly, maximum animal performance is not obtained with a
monotonic performance-reward curve. There exist many education concepts how
the reward should depend on animal performance. MLC might yield novel con-
cepts.

These examples show, pars pro toto, the many MLC opportunities for MIMO
plants which are of large relevance in industry or everyday life. As a disclaimer,
we note that there also exist many problems which are more suitable for a model-
based control strategy. For instance, the effect of control surfaces on the motion of
an aircraft is well represented by a linear model for the usual operating envelope.
Control design based on these models reliably cover many operating conditions.
Thus, the robustness of control laws may be estimated. Continuing to establish a
deeper connection between MLC and traditional control analysis will be essential to
ensure broad adoption of these methods, as discussed in Chap. 4.

The flow around the airplane is turbulent but the time-averaged effect of myriad
of vortices yields a nearly linear relationship between motion of the control surface
and aerodynamic force. Taking the time scale of the vortices as reference, the model-
based operation of the control surface can be considered as slow adaptive control.
Mathematically, the situation might be compared to statistical thermodynamics where
myriad of gas molecule collisions, i.e. strongly nonlinear events, can still lead to a
linear relation between pressure and temperature in a finite volume by statistical
averaging.

8.4 Exercises

Exercise 8–1: Investigate each of the following machine learning clustering algo-
rithms and think about a representative data set that works well with the method
and a representative data set that does not work with the method: K-means, linear
discriminant analysis (LDA), support vector machines (SVM), decision trees.

Exercise 8–2: Consider the following signal, which is obtained as the sum of two
sine waves:

f (t) = sin(114π Hz t) + sin(1042π Hz t).

The Shannon–Nyquist sampling theorem [201, 248] indicates that one must mea-
sure at 1042 samples per second to accurately reconstruct this signal. However,
because the signal is sparse in the Fourier domain (i.e., only two Fourier modes
are active at 57 and 521 Hz), we may reconstruct this signal from dramatically
under-sampled measurements.

http://dx.doi.org/10.1007/978-3-319-40624-4_4
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In this exercise, create a time-resolved signal f by sampling at 1042 samples
per second for 10 s. Now sample this signal randomly for 10 s with an average
sampling rate of 128 samples per second. You may think of the sampled vector
fs as the output after applying a measurement matrix C to the full time-resolved
signal:

fs = Cf,

where f is a time-resolved vector of the signal: f= [
f (Δt) f (2Δt) · · · f (NΔt)

]T
,

and C contains random rows of the N × N identify matrix.
Finally, we may solve for the active Fourier modes in the compressed sensing
problem:

fs = CΨ f̂,

where Ψ is the inverse discrete Fourier transform. Use a convex optimization
routine, such as cvx in Matlab®, to solve for the sparsest vector f̂ that solves the
underdetermined system above.

Exercise 8–3: Consider the LQR stabilization task from Exercise 4–1. Here, we
will define a metric on the space of controller functions in an attempt to improve
the convergence time of genetic programming control. First, create one hundred
random states a where each component a1 and a2 are Gaussian distributed about
a1 = a2 = 0 with unit variance. Now, for each controller, b = K(a), evaluate
the control law at these same one hundred random states, and store the value in a
100 × 1 vector bhash. It is now possible to use these vectors to construct a proxy
distance between two controllers b = K1(a) and b = K2(a):

d(K1, K2) � ‖bhash,1 − bhash,2‖2. (8.1)

Using this induced metric, modify your genetic programming search strategy to
improve the convergence rate by reducing the number of redundant controller
functions tested. For instance, when mutating, you might check if a new individ-
ual is sufficiently similar to individuals from a previous generation, and impose
additional distance criteria to improve exploration and exploitation.

Exercise 8–4: Pick a future application of MLC from Sect. 8.3 and explore the
current control approaches being applied tho this system. What are the challenges
with applying MLC to this problem?
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8.5 Interview with Professor Belinda Batten

Belinda Batten is Professor of Mechanical Engineering at Oregon State Univer-
sity, OR, USA. Professor Batten is the Director of the Northwest National Marine
Renewable Energy Center (NNMREC), a collaboration between Oregon State Uni-
versity, the University of Washington, and the University of Alaska Fairbanks. NNM-
REC supports wave, tidal, offshore wind, and in-river energy harvesting through
research and testing. The consortium was established by the U.S. Department of
Energy to facilitate the development of marine renewable energy technologies via
research, education, and outreach.

Professor Batten is internationally renowned for her research in modeling and
control of distributed parameter systems, especially for her development of com-
putational algorithms for reduced-order controllers. Her current research projects
include mathematical modeling and control of autonomous vehicles and wave energy
devices. She has raised significant funding to support her research from DARPA,
DoD, NSF, and DOE.

Professor Batten has been a Program Manager for dynamics and control at the
Air Force Office of Scientific Research, after which she was elected member of the
Scientific Advisory Board for the U.S. Air Force. She was also a professor of mathe-
matics at Virginia Tech, and served as Department Head for Mechanical Engineering
from 2003–2007 and as Head of the School of Mechanical, Industrial and Manufac-
turing Engineering from 2007–2011 at OSU. Her research was honored by national
and international awards, for instance by the prestigious Alexander von Humboldt
fellowship.

Authors: You are a leader in the field of marine renewable energy and have devel-
oped numerous innovative technologies and control solutions. What were the
main trends in marine renewable energy, especially related to fluid modeling and
control, in the past decade?

Prof. Batten: I will focus my comments on wave energy, as that is where my pri-
mary expertise lies. Prior to this past decade, there has been a good amount of
research on developing models of wave energy converters, and some work on
controlling them. The modeling work typically leveraged the great volume of
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literature on hydrodynamics of ocean structures. The work on control has typi-
cally been model-based optimal control, and often has ignored the “control costs”
that arise through actuation. That is, the results on the amount of energy produced
through active control were often highly theoretical.
In the last ten years, more work has been done in experimental validation of
computational models. Computational codes for simulating wave energy convert-
ers continue to be developed. Recently, codes are being developed for design of
marine energy arrays, both wave and tidal current energy converters.
Some researchers are working on high fidelity fluid-structure interaction models
for wave and tidal energy converters. These codes are not currently suitable for
control design and computation as they require millions of state variables. As
computational capabilities continue to progress, these codes may be more useful
in the control regime, but at this point, model reduction of some type is required
to use them for purposes other than simulation, e.g., for control or optimization.

Authors: You were an early advocate of merging control theory with fluid mechan-
ics. Do you see any key similarities or differences in the current efforts to bring
machine learning into the fluid dynamics community?

Prof. Batten: One of the challenges in merging control theory with fluid dynamics
in the early years was learning each others’ language. Basic terms like “control”
were used differently by control theorists and by fluid dynamicists. I remember
giving a kick-off talk at a meeting of the two groups, laying the foundation for
the discussion—including the typical nomenclature for mathematically describ-
ing a fluid system with a control. One of the fluid dynamicists responded, “you
mean my entire life’s work in actuator modeling is reduced to a B matrix?” So,
part of getting the two groups to work together was facilitating a common under-
standing of what problems were viewed as easy, hard, unanswered, unanswerable,
tractable, etc. Once these communities began to interact with each other, great
progress was made, and a lot was learned.
I hope that bringing machine learning into the community is a little easier because
some of the same people in the controls and fluid dynamics communities are
involved, and collaborative work across disciplines starts with relationships. That
said, I remember years ago when a seminar speaker talked about using neural net-
works to develop a model for the Navier-Stokes equation; several in the audience
muttered about why anyone would throw out the physics.
And that illustrates the crux of the issue. There are some really hard problems for
which developing high fidelity physics based models for control is not feasible—
at least not with today’s computational limitations. The fluid-structure interaction
modeling of a wave energy converter in the ocean is one of these problems. So,
to develop machine learning approaches that we can test and verify on smaller
tractable problems can lead to solutions and insights on the more complex ones
for which developing physical models for control is infeasible.

Authors: Could you comment on the societal impact of marine renewable energy,
and how you see fluid mechanics and control helping to address the key chal-
lenges?
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Prof. Batten: The reality is that the world cannot continue to rely on fossil fuels to
meet energy needs. The supply of fossil fuels will eventually be exhausted, and
in the meantime, the impact of fossil fuels on our environment is increasingly
destructive. While people may debate about climate change, the acidification of
our oceans is measurable, and the consequences of delaying the move to renew-
able energy are sobering.
In my opinion, replacing fossil fuels will require a portfolio of renewables that
address particular needs of place. Marine renewables could be an important addi-
tion to this portfolio; this energy source is highly predictable, always present, and
located within 50 miles of 50 percent the world’s human population. Tides are
predictable 100 years in the future; waves are predictable 84 h out. Those horizons
make it simple for a utility to manage electricity coming onto the grid, and one
can control marine energy converter arrays to deliver what is needed. Unlike wind
and solar, these energy sources are always present.
The key challenge for marine renewable energy is becoming cost competitive with
other renewable energy sources. Control of marine energy converters has typ-
ically been directed toward maximizing energy extraction. Maximizing energy
produced indeed contributes to a lower cost. However focusing solely on that
objective ignores the reduction in life expectancy of a wave energy converter or
increase in operations and maintenance costs due to fatigue or failure of converters
under extreme events. It may be that for certain converters, control should also be
used to minimize fatigue. At Oregon State University, my colleague Ted Brekken
has been working with his students to develop life extending control to address
this concept.
If computationally tractable models of fluid structure interactions of wave energy
converters—especially under extreme wave conditions—could be developed,
such models could be used to better predict the reliability and survivability of
devices. Alternatively this topic could be fertile research ground for machine
learning. Better understanding reliability and survivability of devices could be
leveraged to understand how to lower the cost of energy of the wave energy
converters, thus contributing to adoption of marine energy.

Authors: In other fields, such as astronomy and particle physics, there are well-
funded grand-challenge problems that the community tackles in a coordinated
effort. Is there a need for similar larger scale collaborative efforts in fluid flow
control? If so, what do we need to do in order to get fluid dynamics to a similar
position in terms of funding and support?

Prof. Batten: I think great progress has been made in fluid flow control since the
early 2000 s when I was challenging the communities to come together and work
collaboratively on these problems. A lot has been learned about what control
can do and what kinds of models and computational codes are useful. I think
the big challenge problem for fluid dynamics related to marine energy is the
fluid-structure interaction models, suitable for control design and optimization.
A workshop that pulls community experts together to define other such problems
might be an important next step.
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Authors: As the director of the Northwest National Marine Renewable Energy
Center (NNMREC), could you comment on some of the grand challenges in
the marine renewable energy sector, and how they may be impacted by machine
learning methods in the coming years?

Prof. Batten: If there is a fundamental grand challenge in marine renewable energy,
it is how to lower the cost of energy of these technologies to make them compet-
itive. While there are many subsystems within a marine energy array with highly
technical underpinnings and each contributes to the overall cost, it is necessary
to take a system level viewpoint of this problem. Applying machine learning
to a system level performance of a marine energy array could have interesting
outcomes.

Authors: This chapter considers future developments and extensions to machine
learning control. If you were giving advice to a new student, what direction would
you point them in for important research problems, and what tools would you want
them to be equipped with?

Prof. Batten: I’ll leave the advice about new research directions in machine learning
to the experts in that area. Regarding the tools that I want students to know, I believe
that it is important for students interested in controls, be it learning based methods
or model based methods, to understand the value and limitations of the various
approaches. When it comes down to it, any control approach is a tool, and it’s
important to know when to use a screw driver and when to use a hammer. There
are times when you could use either, but one is probably better for the job than
the other.

Authors: We look forward to your continued breakthroughs in control and renewable
energy, and we thank you for this interview!



Glossary

I learned very early the difference between knowing the name of
something and knowing something.

Richard Feynman

Active control A controller that expends energy to accomplish a control task. For
example, an automobile cruise-controller will actively control the fuel and brakes
to regulate forward velocity.

Adaptive control A controller that modifies its action to optimize performance or
account for varying system parameters or externally varying conditions.

Actuator A device that modifies the system according to the control input. The
actuation effect is typically modeled by the structure of the B matrix in a control
system.

Crossover A genetic operation where two individuals exchange a portion of their
expression, thereby increasing diversity of the future generation. Crossover tends
to exploit successful patterns in the parent individuals to producemore fit offspring
in future generations.

Closed-loop control The process of controlling actuators based on sensor mea-
surements.

Clustering Identifying groups of similar data. If the data are labeled, this is called
supervised, and if the data is not labeled, it is unsupervised.

Coherent structures A structure in a dynamical system that remains coherent,
or spatially correlated, for some time; here spatial correlation typically refers to
the state of the dynamical system. In fluids, coherent structures often refer to
persistent vortical structures that stay intact despite turbulent fluctuations.

Control theory The theory of processeswhichmodify a system for an engineering
goal, often with actuators and sensors.

Cost function A function that quantifies the cost or penalty of a given control law
or estimator.
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Disturbance An external perturbation to the system that passes through the
dynamics, also known as process noise. Disturbances are typically seen as
unwanted perturbations that degrade performance, such as unreliable or unpre-
dictable environmental conditions.

Dynamical system A model for how a state evolves in time, possibly in response
to an actuation signal and external disturbances. The dynamical system may have
an output equation that consists of a set of measurements of the state and actuation
signal. A dynamical system may either be nonlinear or linear, and they are often
represented as a system of ordinary differential equations.

Elitism A genetic operation whereby the best individual(s) from a generation are
automatically copied to the next generation without probabilistic selection based
on fitness.

Estimator A dynamical system that estimates the state of another dynamical sys-
tem from a limited set of measurements. See Kalman filter.

Evolutionary algorithm Analgorithm that adapts over time (generations) accord-
ing to a fitness or cost function.

Exploitation The process in an evolutionary algorithm whereby successful pat-
terns in individuals of a given generation are exploited to produce more fit indi-
viduals in the next generation. Crossover is a genetic operation that promotes
exploitation.

Exploration The process in an evolutionary algorithm whereby new, unexplored
patterns are sought out for individuals in future generations. Mutation is a genetic
operation that promotes exploration.

Expression tree A function or expression that may be expressed as a tree, where
each node represents a unary or binary mathematical operation, such as +, −, ×,
/, sin, cos, etc. Function trees may be quickly evaluated using recursion.

Feedback control Aclosed-loop control architecture, whereby a downstream sen-
sor measurement is fed back to an upstream actuator.

Feedforward control A control architecture, whereby an upstream sensor mea-
surement is fed forward to a downstream actuator. Often feedforward control is
used to measure an incoming disturbance and apply preventative control down-
stream; this is known as disturbance feedforward control.

Fitness function A function that measures the success of an individual expression
in achieving some goal. Often inversely related to the cost function. In genetic
algorithms and genetic programming, the fitness function determines the proba-
bility that an individual will be selected for the next generation.

Flow control Theprocess ofmodifying afluid system to achieve someengineering
goal. This is often accomplished by active control, whereby energy is expended
to actuate the flow. High-level goals often include lift increase, drag reduction,
mixing enhancement, and these goals may be achieved by physical mechanisms
such as relaminarizing a boundary layer or stabilizing an unstable shear layer.

Frequency crosstalk A phenomena in nonlinear dynamics where a signal or
behavior at one frequency can effect or modify a signal or behavior at another
frequency. In a linear system, input forcing at a single fixed frequency will result
in an output response with the same frequency and a new magnitude and phase.
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However, in a nonlinear system, forcing a system at a single fixed frequency may
result in an output response where multiple frequencies are modified through
nonlinear coupling mechanisms.

Generation A collection of individuals to be tested in a genetic algorithm or in
genetic programming. The performance of these individuals are evaluated, and
each individual’s fitness function determines the probability of advancing to the
next generation via the genetic operations.

Genetic algorithm An evolutionary algorithm to optimize the parameters of an
expression with a pre-specified structure.

Genetic operation A set of operations to advance individuals from one generation
to the next. These operations include elitism, replication, crossover, andmutation.
Individuals are selected for these operations depending on their fitness function.

Genetic programming An evolutionary algorithm to optimize both the structure
and parameters of an expression or a function.

Genetic programming control The process of discovering an effective control
law by using genetic programming to construct functions relating sensor mea-
surements to an actuation signal.

Individual A candidate expression in a genetic algorithm or genetic program-
ming. Each individual is tested, resulting in a fitness function that determines its
probability of propagating to the next generation.

Kalman filter A dynamical system that estimates the full-state of another dynam-
ical system from measurements of the sensor outputs and actuation inputs. The
Kalman filter is an optimal state estimator for a linear system with additive
Gaussian process and measurement noise.

Linear system A dynamical system where superposition holds for solutions. This
implies that doubling the initial condition and the control input signal will result
in exactly twice the output. Often, the system will be a linear time invariant (LTI)
system, so that the dynamics may be characterized entirely by linear operators
(matrices).

Linear quadratic Gaussian (LQG) An optimal sensor-based feedback control
law that consists of a linear quadratic regular feedback law applied to the full-
state estimate from a Kalman filter. The LQG controller is optimal for a linear
system with the same quadratic cost function as in LQR and additive Gaussian
white process and measurement noise of known magnitude.

Linear quadratic regulator (LQR) An optimal full-state feedback control law
to stabilize the state of a linear system while not expending too much actuation
energy. LQR is optimal with respect to a quadratic cost function that balances
deviation of the state and control expenditure.

Linearization The process of approximating a nonlinear dynamical system by
a linear dynamical system near a fixed point or periodic orbit by truncating a
Taylor series of the dynamics at first order. Linearization is valid for small state
perturbations in a small neighborhood of the fixed point or periodic orbit.

Machine learning A set of techniques to automatically generate models from
data that may be generalized and improve with more data. Machine learning is
often applied to high-dimensional data where it is difficult to identify patterns and
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relationships in the data. Common techniques include classification and regres-
sion tasks, and these may be either supervised by expert input or unsupervised
algorithms.

Machine learning control The process of determining effective control laws
through the use of machine learning methods. Controllers are learned through
a guided process that is informed by measured performance data as opposed to
being derived from first principles or optimization routines.

Mean-field model In fluid mechanics, a mean-field model is a low-order Galer-
kin model linking base-flow changes with fluctuations. In the most simple case,
a mean-field model describes the soft onset of an oscillation via a supercritical
Hopf bifurcation. This is also referred to as Watson-Stuart model or weakly non-
linear theory and implies the famous Landau equation for a supercritical Hopf
bifurcation. Generalized models may incorporate several frequencies and do not
require the closeness of a bifurcation.

Measurement noise Noise that is added to the output equation of a dynamical
system, thus not being affected by the dynamics. Often simply referred to as
noise.

Model A mathematical expression that describes a system. Often, a model is
derived from first-principles by physical arguments, such as conservation of mass,
momentum and energy. Alternatively, a model may be derived from observational
data about the system, as in statistics, system identification, and machine learn-
ing. Dynamic models are often represented as a coupled system of differential
equations relating the various quantities under observation.

Model reduction The process of approximating a high-fidelity model with a
smaller, more computationally efficient model in terms of fewer states. Model
reduction is an important step when controlling high-dimensional systems, since
determining and evaluating control laws based on high-fidelity models is often
computationally prohibitive. Moreover, control performance may be limited by
the latency of a control decision, so faster decisions resulting from reduced-order
models are often beneficial.

Mutation A genetic operation where a portion of an individual in the current
generation is randomly altered to produce a new individual in the next generation.
Mutation tends to promote exploration in the search space of possible individuals.

Open-loop control A method of control that specifies a pre-determined input
sequence without correction or adaptation via sensors. A common method of
open-loop control is periodic forcing.

Neural network Anetwork representationof an input–output function that attempts
tomimic the computational flexibility observed in biological networks of neurons.
A neural network consists of a group of individual computational components,
or neurons, that are connected in a network or graph structure to perform some
computation. Neural networks are typically characterized by their adaptability
and trainability to new stimulus.

Noise A quantity that varies randomly in time and is added to some variable in a
dynamical system. If added to the state equation, it is also known as a disturbance
or process noise, and if added to the output equation, it is also known as mea-
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surement noise. Noise is often assumed to follow a Gaussian white noise process,
although it may also be correlated or colored.

Nonlinear system A system of equations or a dynamical system that is character-
ized by nonlinear dynamics. As opposed to a linear system, a nonlinear system
does not satisfy superposition of solutions, resulting in complex behavior, includ-
ing frequency crosstalk and chaos.

Passive control A controller that modifies a system without energy expenditure.
Examples include vortex generators onwings that passively delays flow separation
over a wing.

Plant In control theory, the plant refers to themodel system being controlled along
with the actuator.

Process noise Noise that is added to the state equation of a dynamical system,
thereby passing through the dynamics. Also called a disturbance.

Real-time control A control law that modifies the system on a time scale that is
fast compared with the natural time scale. Also referred to as in-time control.

Reduced-order model Anapproximatemodelwith fewer states than the full high-
fidelity system. Reduced-order models are often desirable in the control of high-
dimensional systems, such as fluids, to reduce computational overhead, leading
to faster, lower-latency control decisions.

Regression A statistical model that relates multiple variables from measurement
data. The method of least squares is a simple linear regression that determines a
best-fit line relating data. Least-squares regression may be generalized to higher
dimensions in what is known as the principal components analysis (PCA). More
generally, nonlinear regression, dynamic regression, and functional or semantic
regression are used to determine complex and possibly time-varying relationships
between variables. Regression is commonly used in both system identification,
model reduction, and machine learning.

Regulator A control law that maintains a set-point in the state variable. See linear
quadratic regulator.

Replication A genetic operation where individuals are copied directly from one
generation to the next. These individuals are selected probabilistically based on
their fitness, so that the most fit individuals are more likely to advance.

Reynolds number A dimensionless quantity that measures the ratio of inertial
and viscous forces in a fluid. The Reynolds number may also be thought of as
a rough measure of the ratio of the size of the largest vortices and the smallest
vortices in a flow. Thus, a volcanic eruption will constitute an extremely high
Reynolds number flow, as there are both very large and very small eddies.

Robust control The field of control theory where controllers are designed to be
inherently robust to model uncertainty, unmodeled dynamics, and disturbances.
Often referred to asH∞ optimal control.

Selection The process of selecting individuals from one generation for the next
generation via a genetic operation. The individuals are selected randomly but with
a bias for individuals with a higher fitness, and these individuals are advanced
using one of the genetic operations.
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Sensor A device that measures the system, producing an output. The sensor effect
is typically modeled by the structure of the C matrix in a control system.

Stability A property of a system, referring to how it behaves for long times or
when it is perturbed. For example, a fixed point of a dynamical system is stable
if small perturbations around this fixed point result in trajectories that stay near
the fixed point and do not leave a neighborhood of the fixed point. A fixed point
of a linear system is unstable if some initial conditions near the fixed point result
in trajectories that grow and leave the neighborhood.

State-space system Amodel consisting of a coupled system of ordinary differen-
tial equations in terms of a collection of variables known as the state variable. The
state variable represents the state of the system, and it is an element of a vector
space or manifold, known as the state space.

System identification The process of determining a model for a physical process
based on measurement data. Typically, system identification involves measuring
the sensor output of a system in response to certain actuation inputs, and a model
for the underlying state dynamics (i.e., hidden variables) is constructed. Most
methods of system identification may be viewed as a form of dynamic regression
of data onto models.

Turbulence A fluid phenomena characterized by multi-scale coherent vorticity in
space and time and strongly nonlinear, chaotic dynamics. Turbulence is often a
characteristic of real-world or industrial flows at high Reynolds number.



Matlab® Code: OpenMLC

This appendix describes OpenMLC, the employed implementation of MLC in
Matlab®. All examples in the book have been performed with this software.

Installation

OpenMLC is a Matlab® toolbox. It can be added to Matlab® by downloading the
toolbox from [94] or duplicate the master branch. The root directory of the toolbox,
OpenMLC, needs to be added to the path with subdirectories. Detailed or alternative
instructions will be available in [94] as the software is updated.

Content

OpenMLC contains a class defined by the fileMLC.m in the folder@MLC. This class
implements all methods discussed in the book. Additionally, a folder MLCtools is
provided. It provides theMLCparameters class descriptionfileswhich implements all
parameters. Also functions such as expression-tree interpreter, derivation function,
common function overloading for protection are provided in this folder. Finally this
folder also contains the Examples subfolder that contains all configuration files,
evaluation function, and typical results discussed in this book.

© Springer International Publishing Switzerland 2017
T. Duriez et al., Machine Learning Control – Taming Nonlinear
Dynamics and Turbulence, Fluid Mechanics and Its Applications 116,
DOI 10.1007/978-3-319-40624-4

195



196 Matlab® Code: OpenMLC

The reader is referred to the documentation of the software:

help MLC % class description and first steps. Also
% list all properties of the MLC class and
% its methods.

help MLC/parameters % will list all configuration parameters
% and available options

for a quick starting guide. Contextual help is available for each method by typing:

help MLC/METHOD % will provide help for METHOD

A full package documentation is available [94]. Any bug report, feature request
or participation can be brought to our attention through the Github repository.
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188. I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev.
Fluid Mech. 45, 357–378 (2013)



References 205

189. M. Milano, P. Koumoutsakos, Neural network modeling for near wall turbulent flow. J. Com-
put. Phys. 182(1), 1–26 (2002)

190. T.M. Mitchell, Machine Learning (McGraw Hill, New York, 1997)
191. R.Mittal, R. Kotapati, L. Cattafesta, Numerical study of resonant interactions and flow control

in a canonical separated flow, in AIAA 43rd Aerospace Sciences Meeting and Exhibit, Reno,
NV, USA, 2005. AIAA Paper 2005-1261

192. B.C. Moore, Principal component analysis in linear systems: controllability, observability,
and model reduction. IEEE Trans. Autom. Control AC-26(1), 17–32 (1981)

193. S.D. Müller, M. Milano, P. Koumoutsakos, Application of machine learning algorithms to
flow modeling and optimization, in Annual Research Briefs (University of Stanford, Center
for Turbulence Research, 1999), pp. 169–178

194. K.P. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge, 2012)
195. A.G. Nair, K. Taira, Network-theoretic approach to sparsified discrete vortex dynamics. J.

Fluid Mech. 768, 549–571 (2015)
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282. Mezić, Igor and Banaszuk, Andrzej, Comparison of systems with complex behavior. Physica
D: Nonlinear Phenomena. 197(1), 101–133 (2004)



Index

A
Actuation

command, 5, 50
penalization, see penalization coefficient

Actuator, 6
design, 156
jet, 124, 136
UVG, 129

C
Closed-loop, see feedback
Compressed sensing, 170, 174
Control

closed-loop, 127
command, see actuation command
design, 6, 8, 11, 58, 97
feedback, 1–5
linear, 6, 67
open-loop, 109
robust, 1, 56, 127, 171
turbulence, 7, 8, 129, 136
with machine learning, see MLC

Controllability, 50
Convergence, 15
Cost function, 4, 5, 19

design, 155
experiment, 124, 130, 136
LQE, 55
LQR, 52, 70
mean-field model, 96

Creation
of expression trees, 20
of first generation, 23–25

Crossover, 15, 28, 32

D
Dynamical system, 5

control command, 5
noise, 5
nonlinear, see nonlinearity
state, 5

E
Elitism, 15, 27, 162
Estimation, 53
Estimator, 54
Evaluation

of individuals, 24, 125
time, 161

Evolutionary algorithm, 8, 14
Experiment

cost function, 124, 130, 136
drift, 167
ideal, 153
MLC, 121
noise, 167

Exploitation, 8, 15, 28, 162
Exploration, 8, 15, 28, 162
Expression tree, 16, 20

creation, 20
leaf, 16, 20
LISP implementation, 21
root, 16, 20
visualization, 100
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F
Feedback, 1

control, 1, 1–5
full-state, 51, 70, 84
sensor-based, 56, 80
system, 3

Flow
backward-facing step, 122
boundary layer, 128
mixing layer, 135

Frequency crosstalk, 7, 93

G
Generation, 14

creation of first, 23–25
Genetic operation

probabilities, 31
see also crossover, 27
see also elitism, 27
see also mutation, 27
see also reproduction, 27

H
Hopf normal form, 84

I
Individual, 14, 20

experimental evaluation, 125
genetic algorithm, 14
interpretation, 145, 146, 159
pre-evaluation, 166
protection of operations, 22
re-evaluation, 26
seeexpression tree, 20
translation, 160

Inverted pendulum, 4

K
Kalman filter, 53

L
Linear model, 58

limitations, 58
LPV, 13, 51
LQE, 53, 53–56, 73

cost function, 55
MLC, 73

LQG, 6, 56, 56–58, 80
MLC, 80

LQR, 6, 52, 51–52, 70
cost function, 52, 70
example, 70
MLC, 70

M
Machine learning, 11, 12, 18

artificial neural network, 18, 172
clustering, 13, 173
decision tree, 18
future, 169
genetic algorithm, 14, 14–15, 173
genetic programming, 16
multi-dimensional scaling, 164, 170
support vector machine, 18

Mean-field model, 94, 94–98
cost function, 96
derivation, 105–108
linear control, 109
MLC, 98
MLC parameters, 99
model reduction, 106

MLC
evaluation of, 99
evaluation of run, 162, 170
experiment, 121
experimental implementation, 143, 145,
146

LQE, 73
LQG, 80
LQR, 70
mean-field model, 98
nonlinearity, 86
principle, 11, 12, 21
stop criteria, 31

Model
generalized mean-field, see mean-field
model

projection, 58
reduction, see reduced-order modeling

Mutation, 15, 27, 31
cut and grow, 27
Hoist, 27
reparametrization, 27
shrink, 27

N
Navier–Stokes equations, 106

stabilization, 6
Nonlinearity, 6, 7, 84

MLC, 86
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O
Observability, 51
Open loop, 4

P
Penalization coefficient, 4, 19, 110, 125, 130

determination, 155
Population, 14

size, 31, 161

R
Real-time loop, 143, 158
Reduced-order modeling, 6, 58

ARMA, 13
BPOD, 58
DEIM, 58
DMD, 13, 58
ERA, 13, 58, 59
Koopman, 13, 58
OKID, 13, 58, 62

Reference tracking, 4
Regression, 9
Replication, 15, 27

S
Search space, 14, 28
Selection, 14, 26

fitness proportional, 27
harshness, 32
tournament, 26–27

Sensor, 6
design, 156
experimental, 124, 129, 136
hot film, 129
hot wire, 136
RT PIV, 124

System
feedback, 3
identification, 13, 59
state-space, 50

T
Time

delay, 6, 80, 160
evaluation, 161
learning, 161
learning loop, 144
real-time, see real-time
transient, 161

Turbulence, 8
control, 7, 8, 129, 136
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